skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-dimensional turbulence above topography: Vortices and potential vorticity homogenization
The evolution of unforced and weakly damped two-dimensional turbulence over random rough topography presents two extreme states. If the initial kinetic energy E is sufficiently high, then the topography is a weak perturbation, and evolution is determined by the spontaneous formation and mutual interaction of coherent axisymmetric vortices. High-energy vortices roam throughout the domain and mix the background potential vorticity (PV) to homogeneity, i.e., in the region between vortices, which is most of the domain, the relative vorticity largely cancels the topographic PV. If E is low, then vortices still form but they soon become locked to topographic features: Anticyclones sit above topographic depressions and cyclones above elevated regions. In the low-energy case, with topographically locked vortices, the background PV retains some spatial variation. We develop a unified framework of topographic turbulence spanning these two extreme states of low and high energy. A main organizing concept is that PV homogenization demands a particular kinetic energy level E . E is the separator between high-energy evolution and low-energy evolution.  more » « less
Award ID(s):
2048583
PAR ID:
10501742
Author(s) / Creator(s):
;
Publisher / Repository:
National Academy of Science
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
44
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultra-high-energy cosmic rays (UHECRs), particles characterized by energies exceeding 1018eV, are generally believed to be accelerated electromagnetically in high-energy astrophysical sources. One promising mechanism of UHECR acceleration is magnetized turbulence. We demonstrate from first principles, using fully kinetic particle-in-cell simulations, that magnetically dominated turbulence accelerates particles on a short timescale, producing a power-law energy distribution with a rigidity-dependent, sharply defined cutoff well approximated by the form f cut E , E cut = sech ( E / E cut ) 2 . Particle escape from the turbulent accelerating region is energy dependent, withtesc∝E−δandδ∼ 1/3. The resulting particle flux from the accelerator follows dN / dEdt E s sech ( E / E cut ) 2 , withs∼ 2.1. We fit the Pierre Auger Observatory’s spectrum and composition measurements, taking into account particle interactions between acceleration and detection, and show that the turbulence-associated energy cutoff is well supported by the data, with the best-fitting spectral index being s = 2.1 0.13 + 0.06 . Our first-principles results indicate that particle acceleration by magnetically dominated turbulence may constitute the physical mechanism responsible for UHECR acceleration. 
    more » « less
  2. MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti 3 C 2 T x MXene monoflakes have exceptional thermal stability at temperatures up to 600 ° C in air, while multiflakes readily oxidize in air at 300 ° C. Density functional theory calculations indicate that confined water between Ti 3 C 2 T x flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti 3 C 2 T x films at 600 ° C, resulting in substantial stability improvement in multiflake films (can withstand 600 ° C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti 3 C 2 T x oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability. 
    more » « less
  3. Abstract While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping time t damp ρ v 2 / E ̇ CR E CR 1 becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating at E ̇ CR ϵ ˜ , where ϵ ˜ is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECR∼Egscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e., ϵ ˜ ρ v 3 / L
    more » « less
  4. We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO 2 :7%Y from the mixed monoclinic ( P 2 1 / c ) + antipolar orthorhombic ( Pbca ) phase to pure antipolar orthorhombic ( Pbca ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the Pbca metastable state at 300 K. Compression also drives polar orthorhombic ( P c a 2 1 ) hafnia into the tetragonal ( P 4 2 / n m c ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO 2
    more » « less
  5. Abstract We present a survey of 1D kinetic particle-in-cell simulations of quasi-parallel nonrelativistic shocks to identify the environments favorable for electron acceleration. We explore an unprecedented range of shock speedsvsh≈ 0.067–0.267c, Alfvén Mach numbers M A = 5 40 , sonic Mach numbers M s = 5 160 , as well as the proton-to-electron mass ratiosmi/me= 16–1836. We find that high Alfvén Mach number shocks can channel a large fraction of their kinetic energy into nonthermal particles, self-sustaining magnetic turbulence and acceleration to larger and larger energies. The fraction of injected particles is ≲0.5% for electrons and ≈1% for protons, and the corresponding energy efficiencies are ≲2% and ≈10%, respectively. The extent of the nonthermal tail is sensitive to the Alfvén Mach number; when M A 10 , the nonthermal electron distribution exhibits minimal growth beyond the average momentum of the downstream thermal protons, independently of the proton-to-electron mass ratio. Acceleration is slow for shocks with low sonic Mach numbers, yet nonthermal electrons still achieve momenta exceeding the downstream thermal proton momentum when the shock Alfvén Mach number is large enough. We provide simulation-based parameterizations of the transition from thermal to nonthermal distribution in the downstream (found at a momentum around p i , e / m i v sh 3 m i , e / m i ), as well as the ratio of nonthermal electron to proton number density. The results are applicable to many different environments and are important for modeling shock-powered nonthermal radiation. 
    more » « less