skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distribution of vasopressin 1a and oxytocin receptor protein and mRNA in the basal forebrain and midbrain of the spiny mouse (Acomys cahirinus)
The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.  more » « less
Award ID(s):
2011001
PAR ID:
10501882
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Brain Structure & Function
Date Published:
Journal Name:
Brain Structure and Function
Volume:
228
Issue:
2
ISSN:
1863-2661
Page Range / eLocation ID:
413 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The onset of parental care is associated with shifts in parents’ perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (Oxtr and Avpr1a) in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (Peromyscus californicus), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right. 
    more » « less
  2. Abstract The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles1–9. How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinalin vivofiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships. 
    more » « less
  3. Abstract Human societies are characterized by norms that restrict selfish behavior and promote cooperation. The oxytocin system is an important modulator of social behavior that may be involved in the evolution of cooperation. Oxytocin acts in both the nucleus accumbens and the anterior cingulate cortex to promote social bonding and social cohesion. Expression of theCD38andOXTRgenes is known to affect oxytocin secretion and binding, respectively, in these brain areas. The Andean highlands provide an excellent opportunity to evaluate the role of oxytocin in the evolution of cooperation. The rich archeological record spans 13,000 years of population growth and cooperative challenges through periods of highland exploration, hunting economies, agro‐pastoralism, and urbanization. Through allele trajectory modeling using both ancient and contemporary whole genomes, we find evidence for strong positive selection on theOXTRandCD38alleles linked with increased oxytocin signaling. These selection events commenced around 2.5 and 1.25 thousand years ago, placing them in the region's Upper Formative and Tiwanaku periods—a time of population growth, urbanization, and relatively low rates of violence. Along with remarkable and enduring cultural developments, increased oxytocin secretion and receptor binding in these brain areas may have facilitated large‐scale cooperation that promoted early urbanization in the Titicaca Basin of the Andean highlands. 
    more » « less
  4. Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair’s defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence. 
    more » « less
  5. Aggression and its neurochemical modulators are typically studied in males, leaving the mechanisms of female competitive aggression or dominance largely unexplored. To better understand how competitive aggression is regulated in the primate brain, we used receptor autoradiography to compare the neural distributions of oxytocin and vasopressin receptors in male and female members of female-dominant versus egalitarian/codominant species within theEulemurgenus, wherein dominance structure is a reliable proxy of aggression in both sexes. We found that oxytocin receptor binding in the central amygdala (CeA) was predicted by dominance structure, with the members of three codominant species showing more oxytocin receptor binding in this region than their peers in four female-dominant species. Thus, both sexes in female-dominantEulemurshow a pattern consistent with the regulation of aggression in male rodents. We suggest that derived pacifism inEulemurstems from selective suppression of ancestral female aggression over evolutionary time via a mechanism of increased oxytocin receptor binding in the CeA, rather than from augmented male aggression. This interpretation implies fitness costs to female aggression and/or benefits to its inhibition. These data establishEulemuras a robust model for examining neural correlates of male and female competitive aggression, potentially providing novel insights into female dominance. 
    more » « less