skip to main content


This content will become publicly available on January 5, 2025

Title: Solvable Polynomial Ideals: The Ideal Reflection for Program Analysis
This paper presents a program analysis method that generates program summaries involving polynomial arithmetic. Our approach builds on prior techniques that use solvable polynomial maps for summarizing loops. These techniques are able to generate all polynomial invariants for a restricted class of programs, but cannot be applied to programs outside of this class---for instance, programs with nested loops, conditional branching, unstructured control flow, etc. There currently lacks approaches to apply these prior methods to the case of general programs. This paper bridges that gap. Instead of restricting the kinds of programs we can handle, our method abstracts every loop into a model that can be solved with prior techniques, bringing to bear prior work on solvable polynomial maps to general programs. While no method can generate all polynomial invariants for arbitrary programs, our method establishes its merit through a monotonicty result. We have implemented our techniques, and tested them on a suite of benchmarks from the literature. Our experiments indicate our techniques show promise on challenging verification tasks requiring non-linear reasoning.  more » « less
Award ID(s):
1942537
PAR ID:
10501908
Author(s) / Creator(s):
;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
8
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
724 to 752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Program verification offers a framework for ensuring program correctness and therefore systematically eliminating different classes of bugs. Inferring loop invariants is one of the main challenges behind automated verification of real-world programs which often contain many loops. In this paper, we present Continuous Logic Network (CLN), a novel neural architecture for automatically learning loop invariants directly from program execution traces. Unlike existing neural networks, CLNs can learn precise and explicit representations of formulas in Satisfiability Modulo Theories (SMT) for loop invariants from program execution traces. We develop a new sound and complete semantic mapping for assigning SMT formulas to continuous truth values that allows CLNs to be trained efficiently. We use CLNs to implement a new inference system for loop invariants, CLN2INV, that significantly outperforms existing approaches on the popular Code2Inv dataset. CLN2INV is the first tool to solve all 124 theoretically solvable problems in the Code2Inv dataset. Moreover, CLN2INV takes only 1.1 seconds on average for each problem, which is 40× faster than existing approaches. We further demonstrate that CLN2INV can even learn 12 significantly more complex loop invariants than the ones required for the Code2Inv dataset. 
    more » « less
  2. Shoham, Sharon ; Vizel, Yakir (Ed.)
    Morgan and McIver’s weakest pre-expectation framework is one of the most well-established methods for deductive verification of probabilistic programs. Roughly, the idea is to generalize binary state assertions to real-valued expectations, which can measure expected values of probabilistic program quantities. While loop-free programs can be analyzed by mechanically transforming expectations, verifying loops usually requires finding an invariant expectation, a difficult task. We propose a new view of invariant expectation synthesis as a regression problem: given an input state, predict the average value of the post-expectation in the output distribution. Guided by this perspective, we develop the first data-driven invariant synthesis method for probabilistic programs. Unlike prior work on probabilistic invariant inference, our approach can learn piecewise continuous invariants without relying on template expectations. We also develop a data-driven approach to learn sub-invariants from data, which can be used to upper- or lower-bound expected values. We implement our approaches and demonstrate their effectiveness on a variety of benchmarks from the probabilistic programming literature. 
    more » « less
  3. Recent trends in software-defined networking have extended network programmability to the data plane. Unfortunately, the chance of introducing bugs increases significantly. Verification can help prevent bugs by assuring that the program does not violate its requirements. Although research on the verification of P4 programs is very active, we still need tools to make easier for programmers to express properties and to rapidly verify complex invariants. In this paper, we leverage assertions and symbolic execution to propose a more general P4 verification approach. Developers annotate P4 programs with assertions expressing general network correctness properties; the result is transformed into C models and all possible paths symbolically executed. We implement a prototype, and use it to show the feasibility of the verification approach. Because symbolic execution does not scale well, we investigate a set of techniques to speed up the process for the specific case of P4 programs. We use the prototype implemented to show the gains provided by three speed up techniques (use of constraints, program slicing, parallelization), and experiment with different compiler optimization choices. We show our tool can uncover a broad range of bugs, and can do it in less than a minute considering various P4 applications. 
    more » « less
  4. We consider the problem of establishing that a program-synthesis problem is unrealizable (i.e., has no solution in a given search space of programs). Prior work on unrealizability has developed some automatic techniques to establish that a problem is unrealizable; however, these techniques are all black-box , meaning that they conceal the reasoning behind why a synthesis problem is unrealizable. In this paper, we present a Hoare-style reasoning system, called unrealizability logic for establishing that a program-synthesis problem is unrealizable. To the best of our knowledge, unrealizability logic is the first proof system for overapproximating the execution of an infinite set of imperative programs. The logic provides a general, logical system for building checkable proofs about unrealizability. Similar to how Hoare logic distills the fundamental concepts behind algorithms and tools to prove the correctness of programs, unrealizability logic distills into a single logical system the fundamental concepts that were hidden within prior tools capable of establishing that a program-synthesis problem is unrealizable. 
    more » « less
  5. Verifying real-world programs often requires inferring loop invariants with nonlinear constraints. This is especially true in programs that perform many numerical operations, such as control systems for avionics or industrial plants. Recently, data-driven methods for loop invariant inference have shown promise, especially on linear loop invariants. However, applying data-driven inference to nonlinear loop invariants is challenging due to the large numbers of and large magnitudes of high-order terms, the potential for overfitting on a small number of samples, and the large space of possible nonlinear inequality bounds. In this paper, we introduce a new neural architecture for general SMT learning, the Gated Continuous Logic Network (G-CLN), and apply it to nonlinear loop invariant learning. G-CLNs extend the Continuous Logic Network (CLN) architecture with gating units and dropout, which allow the model to robustly learn general invariants over large numbers of terms. To address overfitting that arises from finite program sampling, we introduce fractional sampling—a sound relaxation of loop semantics to continuous functions that facilitates unbounded sampling on the real domain. We additionally design a new CLN activation function, the Piecewise Biased Quadratic Unit (PBQU), for naturally learning tight inequality bounds. We incorporate these methods into a nonlinear loop invariant inference system that can learn general nonlinear loop invariants. We evaluate our system on a benchmark of nonlinear loop invariants and show it solves 26 out of 27 problems, 3 more than prior work, with an average runtime of 53.3 seconds. We further demonstrate the generic learning ability of G-CLNs by solving all 124 problems in the linear Code2Inv benchmark. We also perform a quantitative stability evaluation and show G-CLNs have a convergence rate of 97.5% on quadratic problems, a 39.2% improvement over CLN models. 
    more » « less