skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How does a glass fabric tear under cyclic force?
In many applications, glass fabrics are subject to cyclic forces. Here we show that a glass fabric can tear under a much lower cyclic force than monotonic force. For samples of a given width, a threshold force exists below which the fabric does not tear under cyclic load, and a critical force exists at which the fabric tears under monotonic load. For example, for 80 mm wide sample, the threshold force is 12.78 N, and the critical force is 344.73 N. Under cyclic force of amplitude between the threshold force and critical force, tear initiates after some number of cycles. Under either cyclic or monotonic force, the fabric tears in three modes: pullout of transverse yarns, pullout of transverse yarns and break of longitudinal yarns, and break of transverse and longitudinal yarns. We summarize the observed tear modes on the plane of two axes: the amplitude of force and the width of sample. It is hoped that this study will aid the development of fatigue-resistant fabrics and fabric reinforced composites.  more » « less
Award ID(s):
2011754
PAR ID:
10502204
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of the Mechanics and Physics of Solids
Volume:
158
Issue:
C
ISSN:
0022-5096
Page Range / eLocation ID:
104659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cyclic degradation in flexible electronic inks remains a key challenge while their deployment in life critical applications is ongoing. The origin of electrical degradation of a screen-printed stretchable conductive ink with silver flakes embedded in a polyurethane binder is investigated under uniaxial monotonic and cyclic stretching, using in-situ confocal microscopy and scanning electron microscopy experiments, for varying ink thickness (1, 2, and 3 layers, each layer around 8–10 μ m) and trace width (0.5, 1, and 2 mm). Cracks form under monotonic stretching, and the evolution of crack pattern (density, length and width) with applied strain is affected by ink thickness such that the 3-layer ink exhibits larger normalized resistance but slightly lower resistance than the 1-layer ink up to strains of 125%. For cyclic stretching, the crack density and length do not evolve with cycling. However, the cracks widen and deepen, leading to an increase in resistance with cycling. There exists a strong correlation between fatigue life, i.e. the number of cycles until a normalized resistance of 100 is reached, and the strain amplitude. The normalized resistance increase rate with respect to cycling is also found to scale with strain amplitude. The rate of change in resistance with cycling decreases with ink thickness and trace width. For practical applications, thicker ( ⩾ 25 μ m) and wider (⩾2 mm) inks should be used to lower resistance increases with repeated deformation. 
    more » « less
  2. In this research study, the fracture strength of flat 10 mm thick annealed glass sheets having an abrasive water-jet cut surface and bearing against a transparent interface material is experimentally investigated. The transparent interface material is necessary to provide axial-compressive force continuity in modular compression-dominant all- glass shell structures. A series of short glass columns were tested in axial compression under a variety of load cases, which included cyclic, creep, and monotonic-to-fracture loading. A target glass fracture bearing stress of 36.6 MPa is identified and represents an upper bound bearing stress for annealed glass compression members failing in a flexural buckling mode. The study concludes the transparent thermoplastic material, known as Surlyn, was able to achieve a fracture strength that exceeds the target value and that the fracture strength is not affected by cyclic or creep loading. Consequently, column-related failure limit states will occur before glass fracture is associated with interface bearing. Glass fracture occurs in Type-I mode, reflecting the presence of interface tensile stress. Furthermore, the monotonic bearing stiffness in the service range of 5 to 15 MPa is increased by 20 % and 16 % for samples subjected to cyclic and creep loading, respectively, relative to monotonic-only samples. 
    more » « less
  3. Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviour beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organization of yarns into knitted fabrics has long been unresolved. We seek to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fibre networks due to geometric nonlinearity within such hierarchical systems. Fabric anisotropy originates from observed yarn–yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides a design space of knitted fabrics to embed functionalities by varying geometric configuration and material property in instructed procedures compatible to machine manufacturing. Our hierarchical approach to build up a knitted fabric computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications. 
    more » « less
  4. Polyurethane (PU) elastomers are among the most used rubberlike materials due to their combined merits, including high abrasion resistance, excellent mechanical properties, biocompatibility, and good processing performance. A PU elastomer exhibits pronounced hysteresis, leading to a high toughness on the order of 104 J/m2. However, toughness gained from hysteresis is ineffective to resist crack growth under cyclic load, causing a fatigue threshold below 100 J/m2. Here we report a fatigue-resistant PU fiber–matrix composite, using commercially available Spandex as the fibers and PU elastomer as the matrix. The Spandex fibers are stiff, strong, and stretchable. The matrix is soft, tough, and stretchable. We describe a pullout test to measure the adhesion toughness between the fiber and matrix. The test is highly reproducible, showing an adhesion toughness of 3170 J/m2. The composite shows a maximum stretchability of 6.0, a toughness of 16.7 kJ/m2, and a fatigue threshold of 3900 J/m2. When a composite with a precut crack is stretched, the soft matrix causes the crack tip to blunt greatly, which distributes high stress over a long segment of the Spandex fiber ahead the crack tip. This deconcentration of stress makes the composite resist the growth of cracks under monotonic and cyclic loads. The PU elastomer composites open doors for realistic applications of fatigue-resistant elastomers 
    more » « less
  5. Denim fabric samples representing current indigo dye sources and fabric structures were biodegraded in feedstock including food waste, manure, and animal bedding, which are typically composted at the Cornell Farm Services Composting Facility and processed under laboratory conditions for 77 days. Indigo types including dry denim, pre-reduced, and natural did not inhibit degradation as compared to undyed 100% cotton fabric. Additionally, fabrics tested as received from the mill and those tested post scouring degraded effectively. As expected, denim containing 24% polyester and 2% spandex retained overall fabric structure despite degradation of the cotton portion of the yarns. 
    more » « less