skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenetics and Morphometrics of Saw-scaled Vipers in Support of Lineage Diversification
Saw-scaled vipers (genus Echis) are small (up to 58 cm snout-to-vent length), venomous, eastern hemisphere snakes of the subfamily Viperinae. They are distributed across northern Africa, the Arabian Peninsula, and southwestern Asia. This group has been separated into four species complexes and twelve proposed species, however the true diversity within these groups is unclear even given numerous studies on this genus. This is partly due to uneven geographic sampling of specimens and tissue samples, overlapping distributions, and historically difficult to access species’ ranges making this genus difficult to research. Furthermore, previous studies have not used objective species delimitation approaches with either molecular or morphological data. Using recently collected tissue samples, we generate cytochrome b sequences for 24 specimens and combine these with sequences available on GenBank in order to create a time-calibrated phylogeny and estimate species level diversity using single locus species delimitation methods. We couple this with morphological analysis of specimens from the California Academy of Sciences and UC Berkeley Museum of Vertebrate Zoology collections, in order to determine if these genetically delimited species are morphologically diverged. These data can further aid in identifying specimens to species in this genus, as was demonstrated by classifying individuals to species within the Academy’s collection.  more » « less
Award ID(s):
2243994
PAR ID:
10502227
Author(s) / Creator(s):
;
Publisher / Repository:
Society for the Advancement of Chicanos/Hispanics and Native Americans in Science - 2023 NDiSTEM
Date Published:
Format(s):
Medium: X
Location:
Portland, OR
Sponsoring Org:
National Science Foundation
More Like this
  1. Hines, Heather (Ed.)
    Abstract The ant genus Syscia  Roger, 1861 is part of the cryptic ant fauna inhabiting leaf litter and rotten wood in the Asian and American tropics. It is a distinct clade within the Dorylinae, the subfamily from which army ants arose. Prior to this work, the genus comprised seven species, each known from a single or very few collections. Extensive collecting in Middle America revealed an unexpected and challenging diversity of morphological forms. Locally distinct forms could be identified at many sites, but assignment of specimens to species spanning multiple sites was problematic. To improve species delimitation, Ultra-Conserved Element (UCE) phylogenomic data were sequenced for all forms, both within and among sites, and a phylogeny was inferred. Informed by phylogeny, species delimitation was based on monophyly, absence of within-clade sympatry, and a subjective degree of morphological uniformity. UCE phylogenomic results for 130 specimens were complemented by analysis of mitochondrial COI (DNA barcode) data for an expanded taxon set. The resulting taxonomy augments the number of known species in the New World from 3 to 57. We describe and name 31 new species, and 23 species are assigned morphospecies codes pending improved specimen coverage. Queens may be fully alate or brachypterous, and there is a wide variety of intercaste female forms. Identification based on morphology alone is very difficult due to continuous character variation and high similarity of phylogenetically distant species. An identification aid is provided in the form of a set of distribution maps and standard views, with species ordered by size. 
    more » « less
  2. Abstract The terrestrial isopod genusLigidiumincludes 58 species from Europe, Asia, and North America. In Eastern North America four species are recognized:L. floridanumandL. mucronatum, known just from their type localities in Florida and Louisiana respectively,L. blueridgensis, endemic to the southern Appalachians, andL. elrodii, widespread from Georgia to Ontario. The genus shows a marked morphological conservatism, and species are differentiated mostly by small morphological differences; it is not always easy to determine if such variability represents inter‐ or intraspecific variation. Here, we explore the diversity ofLigidiumfrom the southern Appalachian Mountains, exploring the congruence of morphologically defined groups with multilocus phylogenetic reconstructions and molecular species delimitation methods. We have studied a total of 130 specimens from 37 localities, mostly from the southern Appalachians, and analysed mtDNA (Cox1) and nuclear (28S, NaK) sequences. Morphologically, we recognized eight morphotypes, most of them assignable to current concepts ofL.elrodiiandL.blueridgensis. Phylogenetic analyses supported the evolutionary independence of all morphotypes, and suggest the existence of 8–9 species, including limited cryptic diversity. Single‐locus delimitation analyses based on mtDNA data suggest the existence of a much higher number of species than the multilocus analyses. The estimated age of the ancestors of sampled lineages indicates a long presence of the genus in eastern North America and old speciation events through the Miocene. Our results indicate a higher diversity than previously thought among theLigidiumpopulations present in the southern Appalachian Mountains, with several species to be described. 
    more » « less
  3. The grassland leafhopper genus Aconurella is widespread in the Old World. Species of this genus are difficult to identify by traditional morphological characters but the morphology-based species classification in this genus has not previously been tested using molecular data. This study analysed DNA sequence data from two mitochondrial genes (COI, 16S) and one nuclear gene (ITS2) to infer the phylogenetic relationships and status of five previously recognized Aconurella species and compare the performance of different molecular species-delimitation methods using single and multiple loci. The analysis divided the included haplotypes into five well-supported subclades, most corresponding to existing morphology-based species concepts. However, different molecular species delimitation methods (jMOTU, ABGD, bPTP, GMYC and BPP) yielded somewhat different results, suggesting the presence of between 4 and 8 species, sometimes lumping the haplotypes of Aconurella diplachnis and Aconurella sibirica into a single species or recognizing multiple putative species within Aconurella prolixa. Considering the different results yielded by various methods employing single loci, the BPP method, which combines data from multiple loci, may be more reliable for delimiting species of Aconurella. Our results suggest that the morphological characters previously used to identify these species are reliable and adequately reflect boundaries between genetically distinct taxa. 
    more » « less
  4. Camacho, Gabriela P (Ed.)
    Abstract The ant genus Nylanderia Emery has a cosmopolitan distribution and includes 150 extant described species and subspecies, with potentially hundreds more undescribed. Global taxonomic revision has long been stalled by strong intra- and interspecific morphological variation, limited numbers of diagnostic characters, and dependence on infrequently collected male specimens for species description and identification. Taxonomy is further complicated by Nylanderia being one of the most frequently intercepted ant genera at ports of entry worldwide, and at least 15 globetrotting species have widespread and expanding ranges, making species-level diagnoses difficult. Three species complexes (‘bourbonica complex’, ‘fulva complex’, and ‘guatemalensis complex’) include globetrotting species. To elucidate the phylogenetic positions of these three complexes and delimit species boundaries within each, we used target enrichment of ultraconserved elements (UCEs) from 165 specimens representing 98 Nylanderia morphospecies worldwide. We also phased the UCEs, effectively doubling sample size and increasing population-level sampling. After recovering strong support for the monophyly of each complex, we extracted COI barcodes and SNPs from the UCE data and tested within-complex morphospecies hypotheses using three molecular delimitation methods (SODA, bPTP, and STACEY). This comparison revealed that most methods tended to over-split taxa, but results from STACEY were most consistent with our morphospecies hypotheses. Using these results, we recommend species boundaries that are conservative and most congruent across all methods. This work emphasizes the importance of integrative taxonomy for invasive species management, as globetrotting occurs independently across at least nine different lineages across Nylanderia. 
    more » « less
  5. null (Ed.)
    Background Madagascar is famous for its extremely rich biodiversity; the island harbors predominantly endemic and threatened communities meriting special attention from biodiversity scientists. Continuing ongoing efforts to inventory the Malagasy ant fauna, we revise the species currently placed in the myrmicine genus Aphaenogaster Mayr. One species described from Madagascar, Aphaenogaster friederichsi Forel, is synonymized with the Palearctic A. subterranea Latreille syn. nov. This species is considered neither native to Madagascar nor established in the region. This revision focuses on the balance of species in the A. swammerdami group which are all endemic to Madagascar. Methods The diversity of the Malagasy Aphaenogaster fauna was assessed via application of multiple lines of evidence involving quantitative morphometric, qualitative morphological, and DNA sequence data. (1) Morphometric investigation was based on hypothesis-free Nest Centroid clustering (NC-clustering) combined with PArtitioning based on Recursive Thresholding (PART) to estimate the number of morphological clusters and determine the most probable boundaries between them. This protocol provides a repeatable and testable approach to find patterns in continuous morphometric data. Species boundaries and the reliability of morphological clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA). (2) Qualitative, external morphological characteristics (e.g., shape, coloration patterns, setae number) were subjectively evaluated in order to create a priori grouping hypotheses, and confirm and improve species delimitation. (3) Species delimitation analyses based on mitochondrial DNA sequences from cytochrome oxidase I (COI) gene fragments were carried out to test the putative species previously delimited by morphological and morphometric analyses. Results Five species can be inferred based on the integrated evaluation of multiple lines of evidence; of these, three are new to science: Aphaenogaster bressleri sp. n ., A. gonacantha (Emery, 1899), A. makay sp. n. , A. sahafina sp. n. , and A. swammerdami Forel, 1886. In addition, three new synonymies were found for A. swammerdami Forel, 1886 ( A. swammerdami clara Santschi, 1915 syn. n. , A. swammerdami curta Forel, 1891 syn. n. and A. swammerdami spinipes Santschi, 1911 syn. n. ). Descriptions and redefinitions for each taxon and an identification key for their worker castes using qualitative traits and morphometric data are given. Geographic maps depicting species distributions and biological information regarding nesting habits for the species are also provided. 
    more » « less