skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contemporary changes in phenotypic variation, and the potential consequences for eco‐evolutionary dynamics
Abstract Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco‐evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco‐evolutionary studies.  more » « less
Award ID(s):
1849227
PAR ID:
10502239
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Ecology Letters
Date Published:
Journal Name:
Ecology Letters
Volume:
26
Issue:
S1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abdelaziz, Mohamed (Ed.)
    Abstract Individuals within natural populations can experience very different abiotic and biotic conditions across small spatial scales owing to microtopography and other micro-environmental gradients. Ecological and evolutionary studies often ignore the effects of micro-environment on plant population and community dynamics. Here, we explore the extent to which fine-grained variation in abiotic and biotic conditions contributes to within-population variation in trait expression and genetic diversity in natural plant populations. Furthermore, we consider whether benign microhabitats could buffer local populations of some plant species from abiotic stresses imposed by rapid anthropogenic climate change. If microrefugia sustain local populations and communities in the short term, other eco-evolutionary processes, such as gene flow and adaptation, could enhance population stability in the longer term. We caution, however, that local populations may still decline in size as they contract into rare microhabitats and microrefugia. We encourage future research that explicitly examines the role of the micro-environment in maintaining genetic variation within local populations, favouring the evolution of phenotypic plasticity at local scales and enhancing population persistence under global change. 
    more » « less
  2. Abstract Evolvability is the capacity of a population to generate heritable variation that can be acted upon by natural selection. This ability influences the adaptations and fitness of individual organisms. By viewing this capacity as a trait, evolvability is subject to natural selection and thus plays a critical role in eco‐evolutionary dynamics. Understanding this role provides insight into how species respond to changes in their environment and how species coexistence can arise and be maintained. Here, we create a G‐function model of competing species, each with a different evolvability. We analyze population and strategy (= heritable phenotype) dynamics of the two populations under clade initiation (when species are introduced into a population), evolutionary tracking (constant, small changes in the environment), adaptive radiation (availability of multiple ecological niches), and evolutionary rescue (extreme environmental disturbances). We find that when species are far from an eco‐evolutionary equilibrium, faster‐evolving species reach higher population sizes, and when species are close to an equilibrium, slower‐evolving species are more successful. Frequent, minor environmental changes promote the extinction of species with small population sizes, regardless of their evolvability. When several niches are available for a species to occupy, coexistence is possible, though slower‐evolving species perform slightly better than faster‐evolving ones due to the well‐recognized inherent cost of evolvability. Finally, disrupting the environment at intermediate frequencies can result in coexistence with cyclical population dynamics of species with different rates of evolution. 
    more » « less
  3. Summary Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity.Here, we assessed the relative magnitude of eco‐evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32Schoenoplectus americanusgenotypes ‘resurrected’ from century‐long, soil‐stored seed banks to ambient or elevated CO2, varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities.Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9–31% of trait variation.Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change. 
    more » « less
  4. Abstract Allometric scaling describes the relationship of trait size to body size within and among taxa. The slope of the population‐level regression of trait size against body size (i.e. static allometry) is typically invariant among closely related populations and species. Such invariance is commonly interpreted to reflect a combination of developmental and selective constraints that delimit a phenotypic space into which evolution could proceed most easily. Thus, understanding how allometric relationships do eventually evolve is important to understanding phenotypic diversification. In a lineage of fossil Threespine Stickleback (Gasterosteus doryssus), we investigated the evolvability of static allometric slopes for nine traits (five armour and four non‐armour) that evolved significant trait differences across 10 samples over 8500 years. The armour traits showed weak static allometric relationships and a mismatch between those slopes and observed evolution. This suggests that observed evolution in these traits was not constrained by relationships with body size, perhaps because prior, repeated adaptation to freshwater habitats by Threespine Stickleback had generated strong selection to break constraint. In contrast, for non‐armour traits, we found stronger allometric relationships. Those allometric slopes did evolve on short time scales. However, those changes were small and fluctuating and the slopes remained strong predictors of the evolutionary trajectory of trait means over time (i.e. evolutionary allometry), supporting the hypothesis of allometry as constraint. 
    more » « less
  5. Abstract Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held‐up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change. 
    more » « less