Abstract When studying bone fragility diseases, it is difficult to identify which factors reduce bone’s resistance to fracture because these diseases alter bone at many length scales. Here, we investigate the contribution of nanoscale collagen behavior on macroscale toughness and microscale toughening mechanisms using a bovine heat-treatment fragility model. This model is assessed by developing an in situ toughness testing technique for synchrotron radiation micro-computed tomography to study the evolution of microscale crack growth in 3D. Low-dose imaging is employed with deep learning to denoise images while maintaining bone’s innate mechanical properties. We show that collagen damage significantly reduces macroscale toughness and post-yield properties. We also find that bone samples with a compromised collagen network have reduced amounts of crack deflection, the main microscale mechanism of fracture resistance. This research demonstrates that collagen damage at the nanoscale adversely affects bone’s toughening mechanisms at the microscale and reduces the overall toughness of bone.
more »
« less
A numerical study of dehydration induced fracture toughness degradation in human cortical bone
A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture.
more »
« less
- Award ID(s):
- 1952993
- PAR ID:
- 10502257
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of the Mechanical Behavior of Biomedical Materials
- Volume:
- 153
- Issue:
- C
- ISSN:
- 1751-6161
- Page Range / eLocation ID:
- 106468
- Subject(s) / Keyword(s):
- Bone Microstructure Cement line Mechanical characterization Deformation and fracture toughness Crack resistance curve behavior
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale.more » « less
-
The 2023 smooth Lagrangian Crack-Band Model (slCBM), inspired by the 2020 invention of the gap test, prevented spurious damage localization during fracture growth by introducing the second gradient of the displacement field vector, named the “sprain,” as the localization limiter. The key idea was that, in the finite element implementation, the displacement vector and its gradient should be treated as independent fields with the lowest ( ) continuity, constrained by a second-order Lagrange multiplier tensor. Coupled with a realistic constitutive law for triaxial softening damage, such as microplane model M7, the known limitations of the classical Crack Band Model were eliminated. Here, we show that the slCBM closely reproduces the size effect revealed by the gap test at various crack-parallel stresses. To describe it, we present an approximate corrective formula, although a strong loading-path dependence limits its applicability. Except for the rare case of zero crack-parallel stresses, the fracture predictions of the line crack models (linear elastic fracture mechanics, phase-field, extended finite element method (XFEM), cohesive crack models) can be as much as 100% in error. We argue that the localization limiter concept must be extended by including the resistance to material rotation gradients. We also show that, without this resistance, the existing strain-gradient damage theories may predict a wrong fracture pattern and have, for Mode II and III fractures, a load capacity error as much as 55%. Finally, we argue that the crack-parallel stress effect must occur in all materials, ranging from concrete to atomistically sharp cracks in crystals.more » « less
-
In this work, molecular dynamics simulations to explore the crack propagation and fracture behavior of Cu/Nb metallic nanolayered composites (MNCs) were performed. The results of this study are consistent with the previous experimental results, which illustrated that cracks in Cu and Nb layers may exhibit different propagation paths and distances under the isostrain loading condition. The analysis reveals that the interface can increase the fracture resistance of the Nb layer in Cu/Nb MNCs by providing the dislocation sources to generate the plastic strain at the front of the crack. Increasing the layer thickness can enhance the fracture resistance of both Cu and Nb layers, as the critical stress for activating the dislocation motion decreases with the increment of the layer thickness. In addition, grain boundaries (GBs) in polycrystalline Cu/Nb samples would decrease the fracture resistance of Nb layer by promoting the crack propagate along the GBs, i.e., intergranular fracture, while the effect of interface and layer thickness on the fracture resistance of MNCs will not be altered by introducing the GBs in MNCs.more » « less
-
This publication documents measurement data for two in-situ loaded fracture mechanics specimens observed with 3D X-ray microscopy. Materials The diaphysis of a human (92-year-old, male) cadaveric femur was obtained through the Indiana University School of Medicine Anatomical Donation Program. Bars (nominally 4.0 mm x 4.0 mm cross section) were extracted from the diaphysis as demonstrated in Figure-samplelocation. Two single Edge Notch Bend, SEN(B), specimens for a load span s=20 mm were machined for a three-point bend fixture for crack growth in the transverse direction. SEN(B) specimens had the following dimensions (height d, depth b, initial crack length a0): beam 1 d=4.0 mm, b=4.0 mm, a0=1.8 mm, beam 2 d=4.1 mm, b=3.9 mm, a0=1.7 mm). Osteon diameter was measured was measured on polished sections by using backscatter SEM images following Britz (2009), Figure samplelocation.jpg. Using ImageJ, a grid is imposed on the images and On.Dm is determined as the Feret Diameter for at least 40 On.Dm measures. For beam 1 mean On.Dm is 242 micrometer and for beam 2 284 micrometer. Experiments and Data Fracture experiments were conducted with a Deben 5000 load rig in a Zeiss XRADIA 3D microscope. For system details see https://www.physics.purdue.edu/xrm/about-our-instruments/index.html. Data for these experiments is given in the two csv files of this project data set. In these experiments force F (load cell) data and image frame data are obtained as machine output. Crack mouth opening displacement (CMOD) is obtained from 3D X-ray images at frame numbers synchronized to force readings. Fracture process zone (FPZ) length L. FPZ length data is obtained from 3D image data in Gallaway, G. E.; Allen, M. R.; Surowiec, R. K.; Siegmund, T. H. (2025). 3D Image Data from In-situ X-ray Imaging Transverse Crack Growth Experiments in Human Cortical Bone. Purdue University Research Repository. doi:10.4231/94PZ-AB06 Code Code (Analysis_Main.m, Analysis_Func.m) takes data from the .csv files and determines the linear elastic fracture mechanics quantities (LEFM toughness), the quasi-brittle fracture mechanics quantities (QBFM toughness), and the tissue intrinsic (size-independent) fracture properties (tissue toughness, tissue strength, tissue lengthscale). Output is depicted as force-CMOD and fracture process zone length - CMOD records, and as crack growth resistance curves (quasibrittle energy release rate vs. fracture process zone length). In addition, the microstructure constant eta is obtained as the ratio between the tissue intrinsic lengthscale and the mean osteon diameter. Code (P_star.m) is provided to determine maximum sustainable load of a femoral shaft in three-point bending. It is assumed that the beam is a pipe with a surface crack of depth equal to the mean osteon diameter. This code can be used for sensitivity studies of the dependence of whole bone maximum sustainable load on cortical thickness, tissue intrinsic strength and microstructure constant eta. Example calculations are depicted in two relevant figures.more » « less
An official website of the United States government

