This content will become publicly available on February 21, 2025
- Award ID(s):
- 2142727
- NSF-PAR ID:
- 10502305
- Publisher / Repository:
- J Am Chem Soc
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 7
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 4665 to 4679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG ∗ manifolds in dimension four.We then give several applications of this theory.First, we show the existence of harmonic functions with prescribed asymptotics at infinity.A corollary of this is a non-existence result for ALG ∗ manifolds with non-negative Ricci curvature having group Γ = { e } \Gamma=\{e\} at infinity.Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG ∗ manifold.A corollary of this is vanishing of the first Betti number for any ALG ∗ manifold with non-negative Ricci curvature.Another application of our analysis is to determine the optimal order of ALG ∗ gravitational instantons.more » « less
-
Abstract Geomagnetic storms are primarily driven by stream interaction regions (SIRs) and coronal mass ejections (CMEs). Since SIR and CME storms have different solar wind and magnetic field characteristics, the magnetospheric response may vary accordingly. Using FAST/TEAMS data, we investigate the variation of ionospheric O+and H+outflow as a function of geomagnetic storm phase during SIR and CME magnetic storms. The effects of storm size and solar EUV flux, including solar cycle and seasonal effects, on storm time ionospheric outflow, are also investigated. The results show that for both CME and SIR storms, the O+and H+fluences peak during the main phase, and then declines in the recovery phase. However, for CME storms, there is also significant increase during the initial phase. Because the outflow starts during the initial phase in CME storms, there is time for the O+to reach the plasma sheet before the start of the main phase. Since plasma is convected into the ring current from the plasma sheet during the main phase, this may explain why more O+is observed in the ring current during CME storms than during SIR storms. We also find that outflow fluence is higher for intense storms than moderate storms and is higher during solar maximum than solar minimum.
-
Vulnerability Management, which is a vital part of risk and resiliency management efforts, is a continuous process of identifying, classifying, prioritizing, and removing vulnerabilities on devices that are likely to be used by attackers to compromise a network component. For effective and efficient vulnerability management, which requires extensive resources– such as time and personnel, vulnerabilities should be prioritized based on their criticality. One of the most common methods to prioritize vulnerabilities is the Common Vulnerability Scoring System (CVSS). However, in its severity score, the National Institute of Standards and Technology (NIST) only provides the base metric values that include exploitability and impact information for the known vulnerabilities and acknowledges the importance of temporal and environmental characteristics to have a more accurate vulnerability assessment. There is no established method to conduct the integration of these metrics. In this study, we created a testbed to assess the vulnerabilities by considering the functional dependencies between vulnerable assets, other assets, and business processes. The experiment results revealed that a vulnerability's severity significantly changes from its CVSS base score when the vulnerable asset's characteristics and role inside the organization are considered.more » « less