skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward three-dimensional DNA industrial nanorobots
Nanoscale industrial robots have potential as manufacturing platforms and are capable of automatically performing repetitive tasks to handle and produce nanomaterials with consistent precision and accuracy. We demonstrate a DNA industrial nanorobot that fabricates a three-dimensional (3D), optically active chiral structure from optically inactive parts. By making use of externally controlled temperature and ultraviolet (UV) light, our programmable robot, ~100 nanometers in size, grabs different parts, positions and aligns them so that they can be welded, releases the construct, and returns to its original configuration ready for its next operation. Our robot can also self-replicate its 3D structure and functions, surpassing single-step templating (restricted to two dimensions) by using folding to access the third dimension and more degrees of freedom. Our introduction of multiple-axis precise folding and positioning as a tool/technology for nanomanufacturing will open the door to more complex and useful nano- and microdevices.  more » « less
Award ID(s):
2106790
PAR ID:
10502693
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
the American Association for the Advancement of Science
Date Published:
Journal Name:
Science Robotics
Volume:
8
Issue:
85
ISSN:
2470-9476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Siciliano, B.; Laschi, C.; Khatib, O. (Ed.)
    We design a compliant delta manipulator using 3D-printing and soft materials. Our design is different from the traditionally rigid delta robots as it is more accessible through low-cost 3D-printing, and can interact safely with its surroundings due to compliance. This work focuses on parallelogram links which are a key component of the delta robot design. We characterize these links over twelve dimensional parameters, such as beam and hinge thickness, and two material stiffness settings by displacing them, and observing the resulting forces and rotation angles. The parallelogram links are then integrated into a delta robot structure to test for delta mechanism behavior, which keeps the end-effector parallel to the base of the robot. We observed that using compliant hinges resulted in near-delta behavior, laying the groundwork for fabricating and utilizing 3D-printed compliant delta manipulators. 
    more » « less
  2. Two of the main challenges in origami antenna designs are creating a reliable hinge and achieving precise actuation for optimal electromagnetic (EM) performance. Herein, a waterbomb origami ring antenna is introduced, integrating the waterbomb origami principle, 3D‐printed liquid metal (LM) hinges, and robotic shape morphing. The approach, combining 3D printing, robotic actuation, and innovative antenna design, enables various origami folding patterns, enhancing both portability and EM performance. This antenna's functionality has been successfully demonstrated, displaying its communication capabilities with another antenna and its ability to navigate narrow spaces on a remote‐controlled wheel robot. The 3D‐printed LM hinge exhibits low DC resistance (200 ± 1.6 mΩ) at both flat and folded state, and, with robotic control, the antenna achieves less than 1° folding angle accuracy and a 66% folding area ratio. The antenna operates in two modes at 2.08 and 2.4 GHz, ideal for fixed mobile use and radiolocation. Through extensive simulations and experiments, the antenna is evaluated in both flat and folded states, focusing on resonant frequency, gain patterns, and hinge connectivity. The findings confirm that the waterbomb origami ring antenna consistently maintains EM performance during folding and unfolding, with stable resonant frequencies and gain patterns, proving the antenna's reliability and adaptability for use in portable and mobile devices. 
    more » « less
  3. The stimuli-responsive self-folding structure is ubiquitous in nature, for instance, the mimosa folds its leaves in response to external touch or heat, and the Venus flytrap snaps shut to trap the insect inside. Thus, modeling self-folding structures has been of great interest to predict the final configuration and understand the folding mechanism. Here, we apply a simple yet effective method to predict the folding angle of the temperature-responsive nanocomposite hydrogel/elastomer bilayer structure manufactured by 3D printing, which facilitates the study of the effect of the inevitable variations in manufacturing and material properties on folding angles by comparing the simulation results with the experimentally measured folding angles. The defining feature of our method is to use thermal expansion to model the temperature-responsive nanocomposite hydrogel rather than the nonlinear field theory of diffusion model that was previously applied. The resulted difference between the simulation and experimentally measured folding angle ( i.e. , error) is around 5%. We anticipate that our method could provide insight into the design, control, and prediction of 3D printing of stimuli-responsive shape morphing ( i.e. , 4D printing) that have potential applications in soft actuators, robots, and biomedical devices. 
    more » « less
  4. Articulated robots are attracting the attention of artists worldwide. Due to their precise, tireless, and efficient nature, robots are now being deployed in different forms of creative expression, such as sculpting, choreography, immersive environments, and cinematography. While there is a growing interest among artists in robotics, programming such machines is a challenge for most professionals in the field, as robots require extensive coding experience and are primarily designed for industrial applications and environments. To enable artists to incorporate robots in their projects, we propose an end-user-friendly robot programming solution using an intuitive spatial computing environment designed for Microsoft Hololens 2. In our application, the robot movements are synchronized with a hologram via network communication. Using natural hand gestures, users can manipulate, animate, and record the hologram similar to 3D animation software, including the advantages of mixed reality interaction. Our solution not only gives artists the ability to translate their creative ideas and movements to an industrial machine but also makes human-robot interaction safer, as robots can now be accurately and effectively operated from a distance. We consider this an important step in a more human-driven robotics community, allowing creators without robot programming experience to easily script and perform complex sequences of robotic movement in service of new arts applications. Making robots more collaborative and safer for humans to interact with dramatically increases their utility, exposure, and potential for social interaction, opens new markets, expands creative industries, and directly locates them in highly visible public spaces. 
    more » « less
  5. Abstract We present a new class of DNA‐based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding‐upon‐repair DNA nanoswitches are synthetic DNA sequences containingO6‐methyl‐guanine (O6‐MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of theO6‐MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding‐upon‐repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors. 
    more » « less