A broadly accepted paradigm is that vegetation reduces coastal dune erosion. However, we show that during an extreme storm event, vegetation surprisingly accelerates erosion. In 104-m-long beach-dune profile experiments conducted within a flume, we discovered that while vegetation initially creates a physical barrier to wave energy, it also (i) decreases wave run-up, which creates discontinuities in erosion and accretion patterns across the dune slope, (ii) increases water penetration into the sediment bed, which induces its fluidization and destabilization, and (iii) reflects wave energy, accelerating scarp formation. Once a discontinuous scarp forms, the erosion accelerates further. These findings fundamentally alter the current understanding of how natural and vegetated features may provide protection during extreme events.
more »
« less
Beach and Dune Subsurface Hydrodynamics and Their Influence on the Formation of Dune Scarps
Abstract Erosive beach scarps influence beach vulnerability, yet their formation remains challenging to predict. In this study, a 1:2.5 scale laboratory experiment was used to study the subsurface hydrodynamics of a beach dune during an erosive event. Pressure and moisture sensors buried within the dune were used both to monitor the water table and to examine vertical pressure gradients in the upper 0.3 m of sand as the slope of the upper beach developed into a scarp. Concurrently, a line‐scan lidar tracked swash bores and monitored erosion and accretion patterns along a single cross‐shore transect throughout the experiment. As wave conditions intensified, a discontinuity in the slope of the dune formed; the discontinuity grew steeper and progressed landward at the same rate as theR2%runup extent until it was a fully formed scarp with a vertical face. Within the upper 0.15 m of the partially saturated sand, upward pore pressure gradients were detected during backwash, influencing the effective weight of sand and potentially contributing to beachface erosion. The magnitude and frequency of the upward pressure gradients increased with deeper swash depths and with frequency of wave interaction, and decreased with depth into the sand. A simple conceptual model for scarp formation is proposed that incorporates observations of upward‐directed pressure gradients from this study while providing a reference for future studies seeking to integrate additional swash zone sediment transport processes that may impact scarp development.
more »
« less
- Award ID(s):
- 1933355
- PAR ID:
- 10502704
- Publisher / Repository:
- AMER GEOPHYSICAL UNION2000 FLORIDA AVE NW, WASHINGTON, DC 20009
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 128
- Issue:
- 12
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vegetated coastal sand dunes can be vital components of flood risk reduction schemes due to their ability to act as an erosive buffer during storm surge and wave attack. However, the effects of plant morphotypes on the wave-induced erosion process are hard to quantify, in part due to the complexity of the coupled hydrodynamic, morphodynamic, and biological processes involved. In this study the effects of four vegetation types on the dune erosion process under wave action was investigated in a wave flume experiment. Sand dune profiles containing real plant arrangements at different growth stages were exposed to irregular waves at water levels producing a collision regime to simulate storm impact. Stepwise multivariate statistical analysis was carried out to determine the relationship of above- and below-ground plant variables to the physical response. Plant variables included, among others, fine root biomass, coarse root biomass, above-ground surface area, stem rotational stiffness, and mycorrhizal colonization. Morphologic variables, among others, included eroded sediment volume, cross-shore area centroid shift, and scarp retreat rate. Results showed that vegetation was able to reduce erosion during a collision regime by up to 37%. Although this reduction was found to be related to both above- and belowground plant structures and their effect on hydrodynamic processes, it was primarily accounted for by the presence of fine root biomass. Fine roots increased the shear strength of the sediment and thus lowered erosional volumes and scarp retreat rates. For each additional 100 mg/L of fine roots (dry) added to the sediment, the erosional volume was reduced by 6.6% and the scarp retreat rate was slowed by 4.6%. Coarse roots and plant-mediated mycorrhizal colonization did not significantly alter these outcomes, nor did the apparent enhancement of wave reflection caused by the fine roots. In summary, fine roots provided a unique ability to bind sediment leading to reduced dune erosion.more » « less
-
Abstract The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land‐sea interface. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward to a maximum depth of 30 cm, driven by the resulting vertical density gradients. This hypersaline plume moves approximately 2 m landward to the top of the swash zone and down the beachface due to wave‐induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near‐surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high‐frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required—neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.more » « less
-
The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land-sea interface. However, the integrated role of these interactions in governing transport processes within the swash zone remains unexplored. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward, driven by the resulting vertical density gradients. This hypersaline plume moves landward and down the beachface due to wave-induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near-surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high-frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required – neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.more » « less
-
Abstract We report on a laboratory study of wave‐swash interactions, which occur in the very nearshore environment of a beach when the shallow swash flow of a breaking wave interacts with a subsequent wave. Wave‐swash interactions have been observed in the field, hypothesized to be important for nearshore transport processes, and categorized into different qualitative types, but quantitative descriptions of their dynamics have remained elusive. Using consecutive solitary waves with different wave heights and separations, we generate a wide variety of wave‐swash interactions with large flow velocities and vertical accelerations. We find that wave‐swash interactions can be quantitatively characterized in terms of two dimensionless parameters. The first of them corresponds to the wave height ratio for consecutive waves, and the second is a dimensionless measure of the time separation between consecutive wave crests. Using measurements of bed pressure and free‐surface displacement, we estimate the total vertical accelerations and focus on the peak upward‐directed acceleration. We find that wave‐swash interactions can generate vertical accelerations that can easily exceed gravity, despite occurring in very shallow water depths. The large vertical accelerations are upward‐directed and are quickly followed by onshore‐directed horizontal velocities. Together, our findings suggest that wave‐swash interactions are capable of inducing large material suspension events of sediment or solutes in sediment pores, and transporting them onshore. While the data are from a single location making it difficult to generalize the findings across the swash zone, the results clearly demonstrate the importance of large vertical accelerations in wave‐swash interactions.more » « less
An official website of the United States government

