skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 16, 2025

Title: Manufacturing process selection based on similarity search: incorporating non-shape information in shape descriptor comparison
Given a part design, the task of manufacturing process selection chooses an appropriate manufacturing process to fabricate it. Prior research has traditionally determined manufacturing processes through direct classification. However, an alternative approach to select a manufacturing process for a new design involves identifying previously produced parts with comparable shapes and materials and learning from them. Finding similar designs from a large dataset of previously manufactured parts is a challenging problem. To solve this problem, researchers have proposed different spatial and spectral shape descriptors to extract shape features including the D2 distribution, spherical harmonics (SH), and the Fast Fourier Transform (FFT), as well as the application of different machine learning methods on various representations of 3D part models like multi-view images, voxel, triangle mesh, and point cloud. However, there has not been a comprehensive analysis of these different shape descriptors, especially for part similarity search aimed at manufacturing process selection. To remedy this gap, this paper presents an in-depth comparative study of these shape descriptors for part similarity search. While we acknowledge the importance of factors like part size, tolerance, and cost in manufacturing process selection, this paper focuses on part shape and material properties only. Our findings show that SH performs the best among non-machine learning methods for manufacturing process selection, yielding 97.96% testing accuracy using the proposed quantitative evaluation metric. For machine learning methods, deep learning on multi-view image representations is best, yielding 99.85% testing accuracy when rotational invariance is not a primary concern. Deep learning on point cloud representations excels, yielding 99.44% testing accuracy when considering rotational invariance.  more » « less
Award ID(s):
2113672 2229260
PAR ID:
10502723
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Intelligent Manufacturing
ISSN:
0956-5515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given a part design, the task of manufacturing process classification identifies an appropriate manufacturing process to fabricate it. Our previous research proposed a large dataset for manufacturing process classification and achieved accurate classification results based on a combination of a convolutional neural network (CNN) and the heat kernel signature for triangle meshes. In this paper, we constructed a classification method based on rotation invariant shape descriptors and a neural network, and it achieved better accuracy than all previous methods. This method uses a point cloud part representation, in contrast to the triangle mesh representation used in our previous work. The first step extracted rotation invariant features consisting of a set of distances between points in the point cloud. Then, the extracted shape descriptors were fed into a CNN for the classification of manufacturing processes. In addition, we provide two visualization methods for interpreting the intermediate layers of the neural network. Last, the performance of the method was tested on some ambiguous examples and their performances were consistent with expectations. In this paper, we have considered only shape information, while non-shape information like materials and tolerances were ignored. Additionally, only parts that require one manufacturing process were considered in this research. Our work demonstrates that part shape attributes alone are adequate for discriminating between different manufacturing processes considered.

     
    more » « less
  2. Abstract Deep neural networks have shown promising success towards the classification and retrieval tasks for images and text data. While there have been several implementations of deep networks in the area of computer graphics, these algorithms do not translate easily across different datasets, especially for shapes used in product design and manufacturing domain. Unlike datasets used in the 3D shape classification and retrieval in the computer graphics domain, engineering level description of 3D models do not yield themselves to neat distinct classes. The current study looks at an improved form of the 3D shape deep learning algorithm for classification and retrieval through the use of techniques such as relaxed classification, use of prime angled camera angles for capturing feature detail and transfer learning for reducing the amount of data and processing time needed to train shape recognition algorithms. The proposed algorithm (MVCNN++) builds on top of multi-view convolutional neural network (MVCNN) algorithm, improving its efficacy for manufacturing part classification by enabling use of part metadata, yielding an improvement of almost 6% over the original version. With the explosive growth of 3D product models available in publicly available repositories, search and discovery of relevant models is critical to democratizing access to design models. 
    more » « less
  3. Enabling the vision of on-demand cyber manufacturing-as-a-service requires a new set of cloud-based computational tools for design manufacturability feedback and process selection to connect designers with manufacturers. In our prior work, we demonstrated a generative modeling approach in voxel space to model the shape transformation capabilities of machining operations using unsupervised deep learning. Combining this with a deep metric learning model enabled quantitative assessment of the manufacturability of a query part. In this paper, we extend our prior work by developing a semantic segmentation approach for machinable volume decomposition using pre-trained generative process capability models, which output per-voxel manufacturability feedback and labels of candidate machining operations for a query 3D part. Using three types of complex parts as case studies, we show that the proposed method accurately identifies machinable and non-machinable volumes with an average intersection-over-union (IoU) of 0.968 for axisymmetric machining operations, and a class-average F1 score of 0.834 for volume segmentation by machining operation. 
    more » « less
  4. Abstract We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets. 
    more » « less
  5. null (Ed.)
    Abstract Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: an imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that (1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces and (2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer. 
    more » « less