In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid–liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.
more »
« less
Kinetic control of shape deformations and membrane phase separation inside giant vesicles
A variety of cellular processes use liquid–liquid phase separation (LLPS) to create functional levels of organization, but the kinetic pathways by which it proceeds remain incompletely understood. Here in real time, we monitor the dynamics of LLPS of mixtures of segregatively phase-separating polymers inside all-synthetic, giant unilamellar vesicles. After dynamically triggering phase separation, we find that the ensuing relaxation—en route to the new equilibrium—is non-trivially modulated by a dynamic interplay between the coarsening of the evolving droplet phase and the interactive membrane boundary. The membrane boundary is preferentially wetted by one of the incipient phases, dynamically arresting the progression of coarsening and deforming the membrane. When the vesicles are composed of phase-separating mixtures of common lipids, LLPS within the vesicular interior becomes coupled to the membrane’s compositional degrees of freedom, producing microphase-separated membrane textures. This coupling of bulk and surface phase-separation processes suggests a physical principle by which LLPS inside living cells might be dynamically regulated and communicated to the cellular boundaries.
more »
« less
- Award ID(s):
- 1810540
- PAR ID:
- 10502735
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Chemistry
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1755-4330
- Page Range / eLocation ID:
- 54 to 62
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid–liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.more » « less
-
null (Ed.)Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.more » « less
-
Abstract Prebiotically‐plausible compartmentalization mechanisms include membrane vesicles formed by amphiphile self‐assembly and coacervate droplets formed by liquid–liquid phase separation. Both types of structures form spontaneously and can be related to cellular compartmentalization motifs in today's living cells. As prebiotic compartments, they have complementary capabilities, with coacervates offering excellent solute accumulation and membranes providing superior boundaries. Herein, protocell models constructed by spontaneous encapsulation of coacervate droplets by mixed fatty acid/phospholipid and by purely fatty acid membranes are described. Coacervate‐supported membranes form over a range of coacervate and lipid compositions, with membrane properties impacted by charge–charge interactions between coacervates and membranes. Vesicles formed by coacervate‐templated membrane assembly exhibit profoundly different permeability than traditional fatty acid or blended fatty acid/phospholipid membranes without a coacervate interior, particularly in the presence of magnesium ions (Mg2+). While fatty acid and blended membrane vesicles are disrupted by the addition of Mg2+, the corresponding coacervate‐supported membranes remain intact and impermeable to externally‐added solutes. With the more robust membrane, fluorescein diacetate (FDA) hydrolysis, which is commonly used for cell viability assays, can be performed inside the protocell model due to the simple diffusion of FDA and then following with the coacervate‐mediated abiotic hydrolysis to fluorescein.more » « less