skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct real-time measurements of superoxide release from skeletal muscles in rat limbs and human blood platelets using an implantable Cytochrome C microbiosensor
Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/μM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.  more » « less
Award ID(s):
2042544
PAR ID:
10502776
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier: https://www.sciencedirect.com/science/article/pii/S0956566323006061?via%3Dihub
Date Published:
Journal Name:
Biosensors and Bioelectronics
Volume:
240
Issue:
C
ISSN:
0956-5663
Page Range / eLocation ID:
115664
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reactive oxygen species (ROS) including the superoxide anion (O2•−) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O2•− kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O2•− release in cell cultures for extended periods (> 8 h) using an O2•− specific microelectrode. To achieve the sensitivity and selectivity requirements for cellular sensing, we developed a biohybrid system consisting of superoxide dismutase (SOD) and Ti3C2Tx MXenes, deposited on a gold microwire electrode (AuME) as O2•− specific materials with catalytic amplification through the synergistic action of the enzyme and the biomimetic MXenes-based structure. The biosensor demonstrated a sensitivity of 18.35 nA/μM with a linear range from 147 to 930 nM in a cell culture medium. To demonstrate its robustness and practicality, we applied the biosensor to monitor O2•− levels in human leukemia monocytic THP-1 cells upon stimulation with lipopolysaccharide (LPS). Using this strategy, we successfully monitored LPS-induced O2•− in THP-1 cells, as well as the quenching effect induced by the ROS scavenger N-acetyl-l-cysteine (NAC). The biosensor is generally useful for exploring the role of oxidative stress and longitudinally monitoring O2•− release in cell cultures, enabling studies of biochemical processes and associated oxidative stress mechanisms in cellular and other biological environments. 
    more » « less
  2. Managing stress is essential for mental and physical health, yet current methods rely on subjective self-assessments or indirect physiological measurements, often lacking accuracy. Existing wearable sensors primarily target a single stress hormone, cortisol, using single-point measurements that fail to capture real-time changes and distinguish between acute and chronic stress. To address this, we present Stressomic, a wearable multiplexed microfluidic biosensor for noninvasive monitoring of cortisol, epinephrine, and norepinephrine in sweat. Stressomic integrates iontophoresis-driven sweat extraction with bursting valve-regulated microfluidic channels for continuous sampling and analysis. Gold nanodendrite–decorated laser-engraved graphene electrodes achieve picomolar-level sensitivity, enabling simultaneous detection of multiple stress hormones. Electrochemical assays and human studies demonstrate that Stressomic reliably tracks hormone fluctuations in response to physical, psychological, and pharmacological stressors. Distinct temporal patterns reveal the dynamic interplay between the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. This platform enables continuous, multiplexed stress profiling, offering opportunities for early detection of maladaptive responses, personalized stress management, and deeper insights into stress biology. 
    more » « less
  3. Abstract The coronavirus disease 2019 (COVID-19) is a highly contagious and fatal disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In general, the diagnostic tests for COVID-19 are based on the detection of nucleic acid, antibodies, and protein. Among different analytes, the gold standard of the COVID-19 test is the viral nucleic acid detection performed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. However, the gold standard test is time-consuming and requires expensive instrumentation, as well as trained personnel. Herein, we report an ultrasensitive electrochemical biosensor based on zinc sulfide/graphene (ZnS/graphene) nanocomposite for rapid and direct nucleic acid detection of SARS-CoV-2. We demonstrated a simple one-step route for manufacturing ZnS/graphene by employing an ultrafast (90 s) microwave-based non-equilibrium heating approach. The biosensor assay involves the hybridization of target DNA or RNA samples with probes that are immersed into a redox active electrolyte, which are detectable by electrochemical measurements. In this study, we have performed the tests for synthetic DNA samples and, SARS-CoV-2 standard samples. Experimental results revealed that the proposed biosensor could detect low concentrations of all different SARS-CoV-2 samples, using such as S, ORF 1a, and ORF 1b gene sequences as targets. This microwave-synthesized ZnS/graphene-based biosensor could be reliably used as an on-site, real-time, and rapid diagnostic test for COVID-19. 
    more » « less
  4. Abstract Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at −5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation. 
    more » « less
  5. A chip-based electrochemical biosensor is developed herein for the detection of organophosphate (OP) in food materials. The principle of the sensing platform is based on the inhibition of dimethoate (DMT), a typical OP that specifically inhibits acetylcholinesterase (AChE) activity. Carbon nanotube-modified gold electrodes functionalized with polydiallyldimethylammonium chloride (PDDA) and oxidized nanocellulose (NC) were investigated for the sensing of OP, yielding high sensitivity. Compared with noncovalent adsorption and deposition in bovine serum albumin, bioconjugation with lysine side chain activation allowed the enzyme to be stable over three weeks at room temperature. The total amount of AChE was quantified, whose activity inhibition was highly linear with respect to DMT concentration. Increased incubation times and/or DMT concentration decreased current flow. The composite electrode showed a sensitivity 4.8-times higher than that of the bare gold electrode. The biosensor was challenged with organophosphate-spiked food samples and showed a limit of detection (LOD) of DMT at 4.1 nM, with a limit of quantification (LOQ) at 12.6 nM, in the linear range of 10 nM to 1000 nM. Such performance infers significant potential for the use of this system in the detection of organophosphates in real samples. 
    more » « less