Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.
more »
« less
Isotopic clumping in wood as a proxy for photorespiration in trees
Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R–O–CH3) in wood. Most methoxyl C–H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue13CH2D correlates with temperature (18–28 °C) and atmospheric [CO2] (280–1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.
more »
« less
- Award ID(s):
- 2047003
- PAR ID:
- 10502952
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 46
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Temperate exoplanets between the sizes of Earth and Neptune, known as “sub-Neptunes,” have emerged as intriguing targets for astrobiology. It is unknown whether these planets resemble Earth-like terrestrial worlds with a habitable surface, Neptune-like giant planets with deep atmospheres and no habitable surface, or something exotic in between. Recent JWST transmission spectroscopy observations of the canonical sub-Neptune, K2-18 b, revealed ~1% CH4, ~1% CO2, and a nondetection of CO in the atmosphere. While previous studies proposed that the observed atmospheric composition could help constrain the lower atmosphere's conditions and determine the interior structure of sub-Neptunes like K2-18 b, the possible interactions between the atmosphere and a hot, supercritical water ocean at its base remain unexplored. In this work, we investigate whether a global supercritical water ocean, resembling a planetary-scale hydrothermal system, can explain these observations on K2-18 b–like sub-Neptunes through equilibrium aqueous geochemical calculations. We find that the observed atmospheric CH4/CO2ratio implies a minimum ocean temperature of ~710 K, whereas the corresponding CO/CO2ratio allows ocean temperatures up to ~1070 K. These results indicate that a global supercritical water ocean on K2-18 b is plausible. While life cannot survive in such an ocean, this work represents the first step toward understanding how a global supercritical water ocean may influence observable atmospheric characteristics on volatile-rich sub-Neptunes. Future observations with better-constrained CO and NH3mixing ratios could further help distinguish between possible interior compositions of K2-18 b.more » « less
-
Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.more » « less
-
Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity.more » « less
-
Abstract Understanding the surface temperature and interior structure of cold-to-temperate sub-Neptunes is critical for assessing their habitability, yet direct observations are challenging. In this study, we investigate the impact of water condensation on the atmospheric compositions of sub-Neptunes, focusing on the implications for James Webb Space Telescope (JWST) spectroscopic observations. By modeling the atmospheric photochemistry of two canonical sub-Neptunes, K2-18 b and LHS 1140 b, both with and without water condensation and with and without thick atmospheres, we demonstrate that water condensation can significantly affect the predicted atmospheric compositions. This effect is driven by oxygen depletion from the condensation of water vapor and primarily manifests as an increase in the C/O ratio within the photochemically active regions of the atmosphere. This change in composition particularly affects planets with thin H2-dominated atmospheres, leading to a transition in dominant nitrogen and carbon carriers from N2and oxygen-rich species like CO/CO2toward heavier hydrocarbons and nitriles. While our models do not fully account for the loss mechanisms of these higher-order species, such molecules can go on to form more refractory molecules or hazes. Planets with thin H2-rich atmospheres undergoing significant water condensation are thus likely to exhibit very hazy atmospheres. The relatively flat JWST spectra observed for LHS 1140 b could be consistent with such a scenario, suggesting a shallow surface with extensive water condensation or a high atmospheric C/O ratio. Conversely, the JWST observations of K2-18 b are better aligned with a volatile-rich mini-Neptune with a thick atmosphere.more » « less
An official website of the United States government

