skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effectiveness of pseudomagic traits in promoting premating isolation
Upon the secondary contact of populations, speciation with gene flow is greatly facilitated when the same pleiotropic loci are both subject to divergent ecological selection and induce non-random mating, leading to loci with this fortuitous combination of functions being referred to as ‘magic trait’ loci. We use a population genetics model to examine whether ‘pseudomagic trait’ complexes, composed of physically linked loci fulfilling these two functions, are as efficient in promoting premating isolation as magic traits. We specifically measure the evolution of choosiness, which controls the strength of assortative mating. We show that, surprisingly, pseudomagic trait complexes, and to a lesser extent also physically unlinked loci, can lead to the evolution of considerably stronger assortative mating preferences than do magic traits, provided polymorphism at the involved loci is maintained. This is because assortative mating preferences are generally favoured when there is a risk of producing maladapted recombinants, as occurs with non-magic trait complexes but not with magic traits (since pleiotropy precludes recombination). Contrary to current belief, magic traits may not be the most effective genetic architecture for promoting strong premating isolation. Therefore, distinguishing between magic traits and pseudomagic trait complexes is important when inferring their role in premating isolation. This calls for further fine-scale genomic research on speciation genes.  more » « less
Award ID(s):
1939290
PAR ID:
10503152
Author(s) / Creator(s):
; ;
Publisher / Repository:
royal society publishing
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
1994
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When gene flow accompanies speciation, recombination can decouple divergently selected loci and loci conferring reproductive isolation. This barrier to sympatric divergence disappears when assortative mating and disruptive selection involve the same “magic” trait. Although magic traits could be widespread, the relative importance of different types of magic traits to speciation remains unclear. Because body size frequently contributes to host adaptation and assortative mating in plant-feeding insects, we evaluated several magic trait predictions for this trait in a pair of sympatric Neodiprion sawfly species adapted to different pine hosts. A large morphological dataset revealed that sawfly adults from populations and species that use thicker-needled pines are consistently larger than those that use thinner-needled pines. Fitness data from recombinant backcross females revealed that egg size is under divergent selection between the preferred pines. Lastly, mating assays revealed strong size-assortative mating within and between species in three different crosses, with the strongest prezygotic isolation between populations that have the greatest interspecific size differences. Together, our data support body size as a magic trait in pine sawflies and possibly many other plant-feeding insects. Our work also demonstrates how intraspecific variation in morphology and ecology can cause geographic variation in the strength of prezygotic isolation. 
    more » « less
  2. Abstract Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black‐capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography–mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y‐maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation. 
    more » « less
  3. Abstract Contact zones provide important insights into the evolutionary processes that underlie lineage divergence and speciation. Here, we use a contact zone to ascertain speciation potential in the red‐eyed treefrog (Agalychnis callidryas), a brightly coloured and polymorphic frog that exhibits unusually high levels of intraspecific variation. Populations ofA. callidryasdiffer in a number of traits, several of which are known sexual signals that mediate premating reproductive isolation in allopatric populations. Along the Caribbean coast of Costa Rica, a ~100 km contact zone, situated between two phenotypically and genetically divergent parent populations, contains multiple colour pattern phenotypes and late‐generation hybrids. This contact zone provides the opportunity to examine processes that are important in the earliest stages of lineage divergence. We performed analyses of colour pattern variation in five contact zone sites and six parental sites and found complex, continuous colour variation along the contact zone. We found discordance between the geographic distribution of colour pattern and previously described genomic population structure. We then used a parental site and contact zone site to measure assortative mating and directional selection from naturally‐occurring amplectant mating pairs. We found assortative mating in a parental population, but no assortative mating in the contact zone. Furthermore, we uncovered evidence of directional preference towards the adjacent parental phenotype in the contact zone population, but no directional preference in the parent population. Combined, these data provide insights into potential dynamics at the contact zone borders and indicate that incipient speciation between parent populations will be slowed. 
    more » « less
  4. Summary Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation andde novomutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time. 
    more » « less
  5. Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis- regulatory variation of bric a brac ( bab ) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation. 
    more » « less