skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controls on topography and erosion of the north-central Andes
Abstract We present 17 new 10Be erosion rates from southern Peru sampled across an extreme orographic rainfall gradient. Using a rainfall-weighted variant of the normalized channel steepness index, ksnQ, we show that channel steepness values, and thus topography, are adjusted to spatially varying rainfall. Rocks with similar physical characteristics define distinct relationships between ksnQ and erosion rate (E), suggesting ksnQ is also resolving lithologic variations in erodibility. However, substantial uncertainty exists in parameters describing these relationships. By combining our new data with 38 published erosion rates from Peru and Bolivia, we collapse the range of compatible parameter values and resolve robust, nonlinear ksnQ–E relationships suggestive of important influences of erosional thresholds, rock properties, sediment characteristics, and temporal runoff variability. In contrast, neither climatic nor lithologic effects are clear using the traditional channel steepness metric, ksn. Our results highlight that accounting for spatial rainfall variations is essential for disentangling the multiple influences of climate, lithology, and tectonics common in mountain landscapes, which is a necessary first step toward greater understanding of how these landscapes evolve.  more » « less
Award ID(s):
1842065
PAR ID:
10503193
Author(s) / Creator(s):
; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geology
Volume:
52
Issue:
2
ISSN:
0091-7613
Page Range / eLocation ID:
153 to 158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mountain landscapes have dynamic climates that, together with tectonic processes, influence their topographic evolution. Spatial and temporal variations in rainfall are ubiquitous in these settings as orographic precipitation patterns evolve with climate change and topography. Despite important implications such changes have for river incision, their influence is understudied. Here, we investigate how changes in rainfall pattern should affect both the steady state form and transient evolution of river profiles at the catchment scale using the stream power model. We find that spatially varied rainfall patterns can complicate steady state relationships between mean rainfall, channel steepness and fluvial relief, depending on where rainfall is concentrated in catchments, and lead to unexpected transient behavior if they are neglected. Specifically, changes in rainfall pattern cause multi‐stage transient responses that differ from responses to uniform changes in rainfall. Disparate responses by rivers that experience different rainfall conditions, particularly trunk and tributary rivers, are also an important factor in understanding catchment‐wide responses to climate change. Accounting for such disparities in sampling strategies and topographic analyses may, therefore, be vital for detecting and quantifying climate's role in landscape evolution. Lastly, we show how explicitly accounting for rainfall patterns in channel steepness indices, and thus spatial variations in erosional efficiency, may advance understanding of landscape sensitivity to climate. These results have important implications for detecting transient responses to changes in rainfall pattern (and more broadly climate), interpretation of morphometrics in steady state and transient landscapes, and quantifying the sensitivity of landscapes and erosion rates to climate. 
    more » « less
  2. Abstract Erosional perturbations from changes in climate or tectonics are recorded in the profiles of bedrock rivers, but these signals can be challenging to unravel in settings with non‐uniform lithology. In layered rocks, the surface lithology at a given location varies through time as erosion exposes different layers of rock. Recent modeling studies have used the Stream Power Model (SPM) to highlight complex variations in erosion rates that arise in bedrock rivers incising through layered rocks. However, these studies do not capture the effects of coarse sediment cover on channel evolution. We use the “Stream Power with Alluvium Conservation and Entrainment” (SPACE) model to explore how sediment cover influences landscape evolution and modulates the topographic expression of erodibility contrasts in horizontally layered rocks. We simulate river evolution through alternating layers of hard and soft rock over million‐year timescales with a constant and uniform uplift rate. Compared to the SPM, model runs with sediment cover have systematically higher channel steepness values in soft rock layers and lower channel steepness values in hard rock layers. As more sediment accumulates, the contrast in steepness between the two rock types decreases. Effective bedrock erodibilities back‐calculated assuming the SPM are strongly influenced by sediment cover. We also find that sediment cover can significantly increase total relief and timescales of adjustment toward landscape‐averaged steady‐state topography and erosion rates. 
    more » « less
  3. Temporal and spatial variations of tectonic rock uplift are generally thought to be the main controls on long-term erosion rates in various landscapes. However, rivers continuously lengthen and capture drainages in strike-slip fault systems due to ongoing motion across the fault, which can induce changes in landscape forms, drainage networks, and local erosion rates. Located along the restraining bend of the San Andreas Fault, the San Bernardino Mountains provide a suitable location for assessing the influence of topographic disequilibrium from perturbations by tectonic forcing and channel reorganization on measured erosion rates. In this study, we measured 17 new basin-averaged erosion rates using cosmogenic 10Be in river sands (hereafter, 10Be-derived erosion rates) and compiled 31 10Be-derived erosion rates from previous work. We quantify the degree of topographic disequilibrium using topographic analysis by examining hillslope and channel decoupling, the areal extent of pre-uplift surface, and drainage divide asymmetry across various landscapes. Similar to previous work, we find that erosion rates generally increase from north to south across the San Bernardino Mountains, reflecting a southward increase in tectonic activity. However, a comparison between 10Be-derived erosion rates and various topographic metrics in the southern San Bernardino Mountains suggests that the presence of transient landscape features such as relict topography and drainage-divide migration may explain local variations in 10Be-derived erosion rates. Our work shows that coupled analysis of erosion rates and topographic metrics provides tools for assessing the influence of tectonic uplift and channel reorganization on landscape evolution and 10Be-derived erosion rates in an evolving strike-slip restraining bend. 
    more » « less
  4. Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law. 
    more » « less
  5. Abstract Contrasts in bedrock erodibility have been shown to drive landscape transience, but it is unclear whether horizontal tectonic displacements would enhance such effects. Furthermore, one might expect these factors to coexist, as tectonic convergence helps to create rock strength contrasts in settings like the Himalayas. How do landscapes respond when contacts separating units are raised vertically and shifted horizontally by tectonics? To evaluate such questions, we use landscape evolution models to simulate the exposure of a weak unit in a landscape equilibrated to a strong unit. We explore different simulations varying factors like weak unit erodibility, diffusivity, contact dip, and topographic advection rate. In these simulations, we assess the migration of the main drainage divide as well as changes in channel steepness and topographic relief within the strong unit. Our model results show that the horizontal movement of a contact does enhance drainage divide migration and increases in channel steepness, especially when the contact migrates along rivers with low drainage areas. Across all simulations, however, increases in topographic relief are minimal and temporary. Unexpected behaviors emerge in our simulations in which the mass balance of topography is influenced by horizontal tectonic displacements. For example, the exposure of the weak unit causes a gradual decline in the steepness of the strong unit. We interpret such behaviors to be artifacts related to the fixed boundaries of our domain and likely unrepresentative of natural landscapes. Instead, we focus on simulations where advection does not influence the mass balance of topography. These models show that the horizontal movement of contacts can enhance landscape transience, but this transience is marked by features one can use as diagnostic characteristics. Detecting such characteristics in natural landscapes featuring tectonic convergence would be difficult, however, due to the natural coincidence of factors such as faulting, folding, and landslides. 
    more » « less