skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Synthesis of Targeting Glyco‐Nanoparticles for Surface Enhanced Resonance Raman Based Image‐Guided Tumor Surgery
Surface enhanced resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS‐NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one‐pot method has been developed to synthesize SERS‐NPs with more uniform core diameters of 50 nm, which is applicable to both non‐resonant and resonant Raman dyes. The resulting SERS‐NPs are colloidally stable and bright, enabling NP detection with low‐femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS‐NPs enabling potential multiplex detection. Furthermore, a new liposome‐based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS‐NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal hyaluronan (HA)‐SERS‐NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco‐SERS‐NPs.  more » « less
Award ID(s):
2237142
PAR ID:
10503417
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small Science
ISSN:
2688-4046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capability. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous successful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications. Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear tumor targeting capabilities (target CD44 typically overexpressed in tumors) by anex vivoexperiment and immunohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging, therefore, offers a robust and feasible potential for clinical applications. 
    more » « less
  2. Surface-enhanced Raman spectroscopy (SERS) is an important analytical tool with ultrahigh sensitivity that depends on electromagnetic mechanism (EM) and chemical mechanism (CM). The CM relies on efficient charge transfer between the probe molecules and SERS substrates, which means engineering the molecule attachment and the energy level alignment at the molecule/substrate interface is critical to optimal CM enhancement. Herein, we report enhanced CM of Rhodamine 6G (R6G) on graphene SERS substrates using combined C-band ultraviolet (UVC) irradiation and Pt nanoparticle (Pt-NPs) decoration using atomic layer deposition (ALD). An enhancement of 270% was obtained in the former, which is ascribed to the graphene surface activation and p-doping on graphene for improved R6G molecule attachment and charge transfer by its surface change from hydrophobic to hydrophilic and the down-shift of the Fermi energy (p-doping) after UVC exposure. The Pt-NPs decoration adds an additional enhancement of 250% by further p-doping graphene, which shifts the graphene’s Fermi energy to promote charge (hole) transfer at the R6G/graphene interface. Remarkably, the combination of the UVC irradiation and Pt-NPs decoration has led to enhanced R6G SERS sensitivity of 5 × 10−9 M, which represents a two-orders of magnitude enhancement over that on the pristine graphene and illustrates the importance of graphene engineering for optimal probe molecule attachment and the energy level alignment at the molecule/graphene interface toward achieving high-performance SERS biosensing. 
    more » « less
  3. Abstract Surface‐enhanced Raman scattering (SERS) sensing in microfluidic devices, namely optofluidic‐SERS, suffers an intrinsic tradeoff between mass transport and hot spot density, both of which are required for ultrasensitive detection. To overcome this compromise, photonic crystal‐enhanced plasmonic mesocapsules are synthesized, utilizing diatom biosilica decorated with in‐situ growth silver nanoparticles (Ag NPs). In the optofluidic‐SERS testing of this study, 100× higher enhancement factors and more than 1,000× better detection limit are achieved compared with traditional colloidal Ag NPs, the improvement of which is attributed to unique properties of the mesocapsules. First, the porous diatom biosilica frustules serve as carrier capsules for high density Ag NPs that form high density plasmonic hot‐spots. Second, the submicron‐pores embedded in the frustule walls not only create a large surface‐to‐volume ratio allowing for effective analyte capture, but also enhance the local optical field through the photonic crystal effect. Last, the mesocapsules provide effective mixing with analytes as they are flowing inside the microfluidic channel. The reported mesocapsules achieve single molecule detection of Rhodamine 6G in microfluidic devices and are further utilized to detect 1 × 10−9mof benzene and chlorobenzene compounds in tap water with near real‐time response, which successfully overcomes the constraint of traditional optofluidic sensing. 
    more » « less
  4. Due to their small size, measurements of the complex composition of atmospheric aerosol particles and their surfaces are analytically challenging. This is particularly true for microspectroscopic methods, where it can be difficult to optically identify individual particles smaller than the diffraction limit of visible light (∼350 nm) and measure their vibrational modes. Recently, surface enhanced Raman spectroscopy (SERS) has been applied to the study of aerosol particles, allowing for detection and characterization of previously undistinguishable vibrational modes. However, atmospheric particles analyzed via SERS have primarily been >1 μm to date, much larger than the diameter of the most abundant atmospheric aerosols (∼100 nm). To push SERS towards more relevant particle sizes, a simplified approach involving Ag foil substrates was developed. Both ambient particles and several laboratory-generated model aerosol systems (polystyrene latex spheres (PSLs), ammonium sulfate, and sodium nitrate) were investigated to determine SERS enhancements. SERS spectra of monodisperse, model aerosols between 400–800 nm were compared with non-SERS enhanced spectra, yielding average enhancement factors of 10 2 for both inorganic and organic vibrational modes. Additionally, SERS-enabled detection of 150 nm size-selected ambient particles represent the smallest individual aerosol particles analyzed by Raman microspectroscopy to date, and the first time atmospheric particles have been measured at sizes approaching the atmospheric number size distribution mode. SERS-enabled detection and identification of vibrational modes in smaller, more atmospherically-relevant particles has the potential to improve understanding of aerosol composition and surface properties, as well as their impact on heterogeneous and multiphase reactions involving aerosol surfaces. 
    more » « less
  5. We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH- responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multi- dentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an oppo- site response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-con- centration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling. 
    more » « less