Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene‐containing mono‐ and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram‐negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single‐digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.
This content will become publicly available on April 30, 2025
Microbial‐derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug‐resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low‐yield biosynthetic gene clusters in the genus
- Award ID(s):
- 2246963
- NSF-PAR ID:
- 10503566
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology and Bioengineering
- Volume:
- 121
- Issue:
- 9
- ISSN:
- 0006-3592
- Format(s):
- Medium: X Size: p. 2648-2661
- Size(s):
- p. 2648-2661
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A new bicyclic diterpenoid, benditerpenoic acid, was isolated from soil‐dwelling
Streptomyces sp. (CL12‐4). We sequenced the bacterial genome, identified the responsible biosynthetic gene cluster, verified the function of the terpene synthase, and heterologously produced the core diterpene. Comparative bioinformatics indicated thisStreptomyces strain is phylogenetically unique and possesses nine terpene synthases. The absolute configurations of the newtrans ‐fused bicyclo[8.4.0]tetradecanes were achieved by extensive spectroscopic analyses, including Mosher's analysis,J ‐based coupling analysis, and computations based on sparse NMR‐derived experimental restraints. Interestingly, benditerpenoic acid exists in two distinct ring‐flipped bicyclic conformations with a rotational barrier of ≈16 kcal mol−1in solution. The diterpenes exhibit moderate antibacterial activity against Gram‐positive bacteria including methicillin and multi‐drug resistantStaphylococcus aureus . This is a rare example of an eunicellane‐type diterpenoid from bacteria and the first identification of a diterpene synthase and biosynthetic gene cluster responsible for the construction of the eunicellane scaffold. -
Abstract Synthetic investigations of natural products has been instrumental in the development of novel antibacterial small molecules. 1‐hydroxyboivinianin A, a lactone containing phenolic bisabolane isolated from marine sediment, has reported antibacterial activity against the aquatic pathogen
Vibrio harveyi . The total synthesis of 1‐hydroxyboivinianin A and its enantiomer was completed in a six‐step sequence in 42 % overall yield. The synthesis leveraged a key diastereoselective nucleophilic addition with chiral imidazolidinone to establish the benzylic tertiary alcohol and intramolecular Horner‐Wadsworth Emmons to furnish the lactone. Both enantiomers were found to have negligible antibacterial activity against a panel of gram‐positive and negative bacteria and minimal antifungal activity against phytopathogens. Investigations of a possiblein vitro lactone hydrolysis to produce an inactive linear acid led to the discovery of a spontaneous cyclization, suggesting the lactone is resistant to hydrolysis and the lactone is not degrading to produce an inactive species. -
Abstract Microbes produce a broad spectrum of antibiotic natural products, including many DNA-damaging genotoxins. Among the most potent of these are DNA alkylating agents in the spirocyclopropylcyclohexadienone (SCPCHD) family, which includes the duocarmycins, CC-1065, gilvusmycin, and yatakemycin. The yatakemycin biosynthesis cluster in
Streptomyces sp. TP-A0356 contains an AlkD-related DNA glycosylase, YtkR2, that serves as a self-resistance mechanism against yatakemycin toxicity. We previously reported that AlkD, which is not present in an SCPCHD producer, provides only limited resistance against yatakemycin. We now show that YtkR2 and C10R5, a previously uncharacterized homolog found in the CC-1065 biosynthetic gene cluster ofStreptomyces zelensis , confer far greater resistance against their respective SCPCHD natural products. We identify a structural basis for substrate specificity across gene clusters and show a correlation between in vivo resistance and in vitro enzymatic activity indicating that reduced product affinity—not enhanced substrate recognition—is the evolutionary outcome of selective pressure to provide self-resistance against yatakemycin and CC-1065. -
Abstract The Gram‐positive bacteria, methicillin‐resistant
Staphylococcus aureus (MRSA) and Gram‐negative bacteria,Acinetobacter baumannii , are pathogens responsible for millions of nosocomial infections worldwide. Due to the threat of bacteria evolving resistance to antibiotics, scientists are constantly looking for new classes of compounds to treat infectious diseases. The biphenolic analogs of honokiol that were most potent against oral bacteria had similar bioactivity against MRSA. However, all the compounds proved ineffective againstA. baumannii . The inability to inhibitA. baumannii is due to the difficult‐to‐penetrate lipopolysaccharide‐coated outer membrane that makes it challenging for antibiotics to enter Gram‐negative bacteria. TheC 2 scaffold was optimized from the inhibition of Gram‐positive bacteria to broad‐spectrum antibacterial compounds that inhibit the dangerous Gram‐negative pathogenA. baumannii .