skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 30, 2025

Title: Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential
Abstract

Microbial‐derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug‐resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low‐yield biosynthetic gene clusters in the genusStreptomyces. However, low natural product yields—improvements to which have been hindered by the lack of high throughput methods—have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins—angucycline family polyketides under investigation as cancer therapeutics—by a genetically modifiedStreptomyces cyanogenus136. After simplifying the extraction process fromS. cyanogenuscultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram‐positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram‐negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced byStreptomyces, as well as the light‐absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.

 
more » « less
Award ID(s):
2246963
NSF-PAR ID:
10503566
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
121
Issue:
9
ISSN:
0006-3592
Format(s):
Medium: X Size: p. 2648-2661
Size(s):
p. 2648-2661
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene‐containing mono‐ and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram‐negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single‐digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.

     
    more » « less
  2. Abstract

    A new bicyclic diterpenoid, benditerpenoic acid, was isolated from soil‐dwellingStreptomycessp. (CL12‐4). We sequenced the bacterial genome, identified the responsible biosynthetic gene cluster, verified the function of the terpene synthase, and heterologously produced the core diterpene. Comparative bioinformatics indicated thisStreptomycesstrain is phylogenetically unique and possesses nine terpene synthases. The absolute configurations of the newtrans‐fused bicyclo[8.4.0]tetradecanes were achieved by extensive spectroscopic analyses, including Mosher's analysis,J‐based coupling analysis, and computations based on sparse NMR‐derived experimental restraints. Interestingly, benditerpenoic acid exists in two distinct ring‐flipped bicyclic conformations with a rotational barrier of ≈16 kcal mol−1in solution. The diterpenes exhibit moderate antibacterial activity against Gram‐positive bacteria including methicillin and multi‐drug resistantStaphylococcus aureus. This is a rare example of an eunicellane‐type diterpenoid from bacteria and the first identification of a diterpene synthase and biosynthetic gene cluster responsible for the construction of the eunicellane scaffold.

     
    more » « less
  3. Abstract

    Synthetic investigations of natural products has been instrumental in the development of novel antibacterial small molecules. 1‐hydroxyboivinianin A, a lactone containing phenolic bisabolane isolated from marine sediment, has reported antibacterial activity against the aquatic pathogenVibrio harveyi. The total synthesis of 1‐hydroxyboivinianin A and its enantiomer was completed in a six‐step sequence in 42 % overall yield. The synthesis leveraged a key diastereoselective nucleophilic addition with chiral imidazolidinone to establish the benzylic tertiary alcohol and intramolecular Horner‐Wadsworth Emmons to furnish the lactone. Both enantiomers were found to have negligible antibacterial activity against a panel of gram‐positive and negative bacteria and minimal antifungal activity against phytopathogens. Investigations of a possiblein vitrolactone hydrolysis to produce an inactive linear acid led to the discovery of a spontaneous cyclization, suggesting the lactone is resistant to hydrolysis and the lactone is not degrading to produce an inactive species.

     
    more » « less
  4. Abstract

    Microbes produce a broad spectrum of antibiotic natural products, including many DNA-damaging genotoxins. Among the most potent of these are DNA alkylating agents in the spirocyclopropylcyclohexadienone (SCPCHD) family, which includes the duocarmycins, CC-1065, gilvusmycin, and yatakemycin. The yatakemycin biosynthesis cluster inStreptomycessp. TP-A0356 contains an AlkD-related DNA glycosylase, YtkR2, that serves as a self-resistance mechanism against yatakemycin toxicity. We previously reported that AlkD, which is not present in an SCPCHD producer, provides only limited resistance against yatakemycin. We now show that YtkR2 and C10R5, a previously uncharacterized homolog found in the CC-1065 biosynthetic gene cluster ofStreptomyces zelensis, confer far greater resistance against their respective SCPCHD natural products. We identify a structural basis for substrate specificity across gene clusters and show a correlation between in vivo resistance and in vitro enzymatic activity indicating that reduced product affinity—not enhanced substrate recognition—is the evolutionary outcome of selective pressure to provide self-resistance against yatakemycin and CC-1065.

     
    more » « less
  5. Abstract

    The Gram‐positive bacteria, methicillin‐resistantStaphylococcus aureus(MRSA) and Gram‐negative bacteria,Acinetobacter baumannii, are pathogens responsible for millions of nosocomial infections worldwide. Due to the threat of bacteria evolving resistance to antibiotics, scientists are constantly looking for new classes of compounds to treat infectious diseases. The biphenolic analogs of honokiol that were most potent against oral bacteria had similar bioactivity against MRSA. However, all the compounds proved ineffective againstA. baumannii. The inability to inhibitA. baumanniiis due to the difficult‐to‐penetrate lipopolysaccharide‐coated outer membrane that makes it challenging for antibiotics to enter Gram‐negative bacteria. TheC 2scaffold was optimized from the inhibition of Gram‐positive bacteria to broad‐spectrum antibacterial compounds that inhibit the dangerous Gram‐negative pathogenA. baumannii.

     
    more » « less