skip to main content


Title: Improved biomass burning emissions from 1750 to 2010 using ice core records and inverse modeling
Abstract

Estimating fire emissions prior to the satellite era is challenging because observations are limited, leading to large uncertainties in the calculated aerosol climate forcing following the preindustrial era. This challenge further limits the ability of climate models to accurately project future climate change. Here, we reconstruct a gridded dataset of global biomass burning emissions from 1750 to 2010 using inverse analysis that leveraged a global array of 31 ice core records of black carbon deposition fluxes, two different historical emission inventories as a priori estimates, and emission-deposition sensitivities simulated by the atmospheric chemical transport model GEOS-Chem. The reconstructed emissions exhibit greater temporal variabilities which are more consistent with paleoclimate proxies. Our ice core constrained emissions reduced the uncertainties in simulated cloud condensation nuclei and aerosol radiative forcing associated with the discrepancy in preindustrial biomass burning emissions. The derived emissions can also be used in studies of ocean and terrestrial biogeochemistry.

 
more » « less
Award ID(s):
2102917 2117844 2102918
PAR ID:
10503588
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000–1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600–1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate.

     
    more » « less
  2. Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000-1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600-1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios, but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate. 
    more » « less
  3. Abstract

    The Arctic is warming at almost four times the global rate. An estimated sixty percent of greenhouse‐gas‐induced Arctic warming has been offset by anthropogenic aerosols, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state‐of‐the‐art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m−2), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic‐induced Arctic climate change.

     
    more » « less
  4. Abstract. Changes in anthropogenic aerosol emissions have strongly contributed to global and regional trends in temperature, precipitation, and other climate characteristics and have been one of the dominant drivers of decadal trends in Asian and African precipitation. These and other influences on regional climate from changes in aerosol emissions are expected to continue and potentially strengthen in the coming decades. However, a combination of large uncertainties in emission pathways, radiative forcing, and the dynamical response to forcing makes anthropogenic aerosol a key factor in the spread of near-term climate projections, particularly on regional scales, and therefore an important one to constrain. For example, in terms of future emission pathways, the uncertainty in future global aerosol and precursor gas emissions by 2050 is as large as the total increase in emissions since 1850. In terms of aerosol effective radiative forcing, which remains the largest source of uncertainty in future climate change projections, CMIP6 models span a factor of 5, from −0.3 to −1.5 W m−2. Both of these sources of uncertainty are exacerbated on regional scales. The Regional Aerosol Model Intercomparison Project (RAMIP) will deliver experiments designed to quantify the role of regional aerosol emissions changes in near-term projections. This is unlike any prior MIP, where the focus has been on changes in global emissions and/or very idealised aerosol experiments. Perturbing regional emissions makes RAMIP novel from a scientific standpoint and links the intended analyses more directly to mitigation and adaptation policy issues. From a science perspective, there is limited information on how realistic regional aerosol emissions impact local as well as remote climate conditions. Here, RAMIP will enable an evaluation of the full range of potential influences of realistic and regionally varied aerosol emission changes on near-future climate. From the policy perspective, RAMIP addresses the burning question of how local and remote decisions affecting emissions of aerosols influence climate change in any given region. Here, RAMIP will provide the information needed to make direct links between regional climate policies and regional climate change. RAMIP experiments are designed to explore sensitivities to aerosol type and location and provide improved constraints on uncertainties driven by aerosol radiative forcing and the dynamical response to aerosol changes. The core experiments will assess the effects of differences in future global and regional (Africa and the Middle East, East Asia, North America and Europe, and South Asia) aerosol emission trajectories through 2051, while optional experiments will test the nonlinear effects of varying emission locations and aerosol types along this future trajectory. All experiments are based on the shared socioeconomic pathways and are intended to be performed with 6th Climate Model Intercomparison Project (CMIP6) generation models, initialised from the CMIP6 historical experiments, to facilitate comparisons with existing projections. Requested outputs will enable the analysis of the role of aerosol in near-future changes in, for example, temperature and precipitation means and extremes, storms, and air quality.

     
    more » « less
  5. Abstract

    Biomass burning is an important component of the Earth system in terms of global biogeochemistry, atmospheric composition, climate, terrestrial ecology, and land use. This study examines published ice core trace gas measurements of acetylene, ethane, and methane, which have been used as proxies for paleofire emissions. We investigate the consistency of these records for the past 1,000 years in terms of (1) temporal trends in global fire emissions and (2) quantitative estimates for changes in global burning (dry matter burned per year). Three‐dimensional transport and box models were used to construct emissions scenarios for the trace gases consistent with each ice core record. Burning histories were inferred from trace gas emissions by accounting for biome‐specific emission factors for each trace gas. The temporal trends in fire inferred from the trace gases are in reasonable agreement, with a large decline in biomass burning emissions from the Medieval Period (MP: 1000–1500 CE) to the Little Ice Age (LIA: 1650–1750 CE). However, the three trace gas ice core records do not yield a consistent fire history, even assuming dramatic (and unrealistic) changes in the spatial distribution of fire and biomes. Substantial changes in other factors such as meteorological transport or atmospheric photochemical lifetimes appear to be required to reconcile the trace gas records.

     
    more » « less