Technological advances in long read sequences have greatly facilitated the development of genomics. However, managing and analyzing the raw genomic data that outpaces Moore's Law requires extremely high computational efficiency. On the one hand, existing software solutions can take hundreds of CPU hours to complete human genome alignment. On the other hand, the recently proposed hardware platforms achieve low processing throughput with significant overhead. In this paper, we propose PARC, an Processing-in-Memory architecture for long read pairwise alignment leveraging emerging resistive CAM (content-addressable memory) to accelerate the bottleneck chaining step in DNA alignment. Chaining takes 2-tuple anchors as inputs and identifies a set of correlated anchors as potential alignment candidates. Unlike traditional main memory which organizes relational data structure in a linear address space, PARC stores tuples in two neighboring crossbar arrays with shared row decoder such that column-wise in-memory computational operations and row-wise memory accesses can be performed in-situ in a symmetric crossbar structure. Compared to both software tools and state-of-the-art accelerators, PARC shows significant improvement in alignment throughput and energy efficiency, thanks to the in-site computation capability and optimized data mapping. 
                        more » 
                        « less   
                    
                            
                            On-the-Fly Data Transformation in Action
                        
                    
    
            Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2144547
- PAR ID:
- 10503683
- Publisher / Repository:
- VLDB Endowment
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 16
- Issue:
- 12
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 3950 to 3953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Analytical database systems are typically designed to use a column-first data layout to access only the desired fields. On the other hand, storing data row-first works great for accessing, inserting, or updating entire rows. Transforming rows to columns at runtime is expensive, hence, many analytical systems ingest data in row-first form and transform it in the background to columns to facilitate future analytical queries. How will this design change if we can always efficiently access only the desired set of columns? To address this question, we present a radically new approach to data transformation from rows to columns. We build upon recent advancements in embedded platforms with re-programmable logic to design native in-memory access on rows and columns. Our approach, termed Relational Memory (RM), relies on an FPGA-based accelerator that sits between the CPU and main memory and transparently transforms base data to any group of columns with minimal overhead at runtime. This design allows accessing any group of columns as if it already exists in memory. We implement and deploy RM in real hardware, and we show that we can access the desired columns up to 1.63× faster compared to a row-wise layout, while matching the performance of pure columnar access for low projectivity, and outperforming it by up to 2.23× as projectivity (and tuple reconstruction cost) increases. Overall, RM allows the CPU to access the optimal data layout, radically reducing unnecessary data movement without high data transformation costs, thus, simplifying software complexity and physical design, while accelerating query execution.more » « less
- 
            A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a profound impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore’s law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage component to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which has a profound impact on the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy allowing for better hardware utilization, and ultimately better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware, as well as the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control.more » « less
- 
            A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a significant impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore's law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage components to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which profoundly impacts the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy, allowing for better hardware utilization and, ultimately, better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware and the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control.more » « less
- 
            The Skyhook Data Management project (SkyhookDM.com) at the Center for Research in Open Source Software (cross.ucsc.edu) at UC Santa Cruz implements customized extensions through Ceph's object class interface that enables offloading database operations to the storage system. In our previous Vault '19 talk, we showed how SkyhookDM can transparently scale out databases. The SkyhookDM Ceph extensions are an example of our 'programmable storage' research efforts at UCSC, and can be accessed through commonly available external/foreign table database interfaces. Utilizing fast in-memory serialization libraries such as Google Flatbuffers and Apache Arrow, SkyhookDM currently implements common database functions such as SELECT, PROJECT, AGGREGATE, and indexing inside Ceph, along with lower-level data manipulations such as transforming data from row to column formats on RADOS servers. In this talk, we will present three of our latest developments on the SkyhookDM project since Vault '19. First, SkyhookDM can be used to also offload operations of access libraries that support plugins for backends, such as HDF5 and its Virtual Object Layer. Second, in addition to row-oriented data format using Google's Flatbuffers, we have added support for column-oriented data formats using the Apache Arrow library within our Ceph extensions. Third, we added dynamic switching between row and column data formats within Ceph objects, a first step towards physical design management in storage systems, similar to physical design tuning in database systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    