One of the most important and widespread corn/maize virus diseases is maize dwarf mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a machine learning analysis of five-band multispectral imagery collected via an unmanned aerial system (UAS) during the 2021 and 2022 seasons for SCMV disease detection in corn fields. The three primary objectives are to (i) determine the spectral bands and vegetation indices that are most important or correlated with SCMV infection in corn, (ii) compare spectral signatures of mock-inoculated and SCMV-inoculated plants, and (iii) compare the performance of four machine learning algorithms, including ridge regression, support vector machine (SVM), random forest, and XGBoost, in predicting SCMV during early and late stages in corn. On average, SCMV-inoculated plants had higher reflectance values for blue, green, red, and red-edge bands and lower reflectance for near-infrared as compared to mock-inoculated samples. Across both years, the XGBoost regression model performed best for predicting disease incidence percentage (R2 = 0.29, RMSE = 29.26), and SVM classification performed best for the binary prediction of SCMV-inoculated vs. mock-inoculated samples (72.9% accuracy). Generally, model performances appeared to increase as the season progressed into August and September. According to Shapley additive explanations (SHAP analysis) of the top performing models, the simplified canopy chlorophyll content index (SCCCI) and saturation index (SI) were the vegetation indices that consistently had the strongest impacts on model behavior for SCMV disease regression and classification prediction. The findings of this study demonstrate the potential for the development of UAS image-based tools for farmers, aiming to facilitate the precise identification and mapping of SCMV infection in corn.
more »
« less
Evaluating Predictive Models of Tree Foliar Moisture Content for Application to Multispectral UAS Data: A Laboratory Study
Water supply is a critical component of tree physiological health, influencing a tree’s photosynthetic activity and resilience to disturbances. The climatic regions of the western United States are particularly at risk from increasing drought, fire, and pest interactions. Existing methods for quantifying drought stress and a tree’s relative resilience against disturbances mostly use moderate-scale (20–30 m) multispectral satellite sensor data. However, tree water status (i.e., water stress) quantification using sensors like Landsat and Sentinel are error-prone given that the spectral reflectance of pixels are a mixture of the dominant tree canopy, surface vegetation, and soil. Uncrewed aerial systems (UAS) equipped with multispectral sensors could potentially provide individual tree water status. In this study, we assess whether the simulated band equivalent reflectance (BER) of a common UAS optical multispectral sensor can accurately quantify the foliar moisture content and water stress status of individual trees. To achieve this, water was withheld from groups of Douglas-fir and western white pine saplings. Then, measurements of each sapling’s foliar moisture content (FMC) and spectral reflectance were converted to BER of a consumer-grade multispectral camera commonly used on UAS. These bands were used in two classification models and three regression models to develop a best-performing FMC model for predicting either the water status (i.e., drought-stressed or healthy) or the foliar moisture content of each sapling, respectively. Our top-performing models were a logistic regression classification and a multiple linear regression which achieved a classification accuracy of 96.55% and an r2 of 82.62, respectively. These FMC models could provide an important tool for investigating tree crown level water stress, as well as drought interactions with other disturbances, and provide land managers with a vital indicator of tree resilience.
more »
« less
- Award ID(s):
- 2242769
- PAR ID:
- 10503925
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 15
- Issue:
- 24
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tree mortality due to global change—including range expansion of invasive pests and pathogens—is a paramount threat to forest ecosystems. Oak forests are among the most prevalent and valuable ecosystems both ecologically and economically in the United States. There is increasing interest in monitoring oak decline and death due to both drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to enable differentiation of oak wilt and drought, and detection prior to visible symptom appearance. We performed an outdoor potted experiment withQuercus rubrasaplings subjected to drought stress and/or artificially inoculated with the pathogen. Models developed from spectral reflectance accurately predicted ecophysiological indicators of oak wilt and drought decline in both potted and field experiments with naturally grown saplings. Both oak wilt and drought resulted in blocked water transport through xylem conduits. However, oak wilt impaired conduits in localized regions of the xylem due to formation of tyloses instead of emboli. The localized tylose formation resulted in more variable canopy photosynthesis and water content in diseased trees than drought-stressed ones. Reflectance signatures of plant photosynthesis, water content, and cellular damage detected oak wilt and drought 12 d before visual symptoms appeared. Our results show that leaf spectral reflectance models predict ecophysiological processes relevant to detection and differentiation of disease and drought. Coupling spectral models that detect physiological change with spatial information enhances capacity to differentiate plant stress types such as oak wilt and drought.more » « less
-
Uncrewed aerial systems (UASs) have emerged as powerful ecological observation platforms capable of filling critical spatial and spectral observation gaps in plant physiological and phenological traits that have been difficult to measure from space-borne sensors. Despite recent technological advances, the high cost of drone-borne sensors limits the widespread application of UAS technology across scientific disciplines. Here, we evaluate the tradeoffs between off-the-shelf and sophisticated drone-borne sensors for mapping plant species and plant functional types (PFTs) within a diverse grassland. Specifically, we compared species and PFT mapping accuracies derived from hyperspectral, multispectral, and RGB imagery fused with light detection and ranging (LiDAR) or structure-for-motion (SfM)-derived canopy height models (CHM). Sensor–data fusion were used to consider either a single observation period or near-monthly observation frequencies for integration of phenological information (i.e., phenometrics). Results indicate that overall classification accuracies for plant species and PFTs were highest in hyperspectral and LiDAR-CHM fusions (78 and 89%, respectively), followed by multispectral and phenometric–SfM–CHM fusions (52 and 60%, respectively) and RGB and SfM–CHM fusions (45 and 47%, respectively). Our findings demonstrate clear tradeoffs in mapping accuracies from economical versus exorbitant sensor networks but highlight that off-the-shelf multispectral sensors may achieve accuracies comparable to those of sophisticated UAS sensors by integrating phenometrics into machine learning image classifiers.more » « less
-
null (Ed.)As the demand for drought hardy tree seedlings rises alongside global temperatures, there is a need to optimize nursery drought preconditioning methods to improve field performance of planted seedlings. This perspective article advocates for a more holistic approach to drought preconditioning research that considers the moderating role of plant developmental stage on the effects of drought preconditioning. We identify discrepancies in past studies of root growth potential (RGP) responses to drought preconditioning and highlight studies that suggest such discrepancies may result from inconsistencies among studies in the timing of drought preconditioning implementation. We then illustrate our perspective by presenting original research from an aeroponic RGP trial of 1st-year western larch ( Larix occidentalis Nutt.) seedlings exposed to three soil moisture contents for 6months. We evaluated whether drought preconditioning could be used to increase the ratio of root: foliar tissue mass or enhance seedling physiological vigor during a subsequent growth period. Drought preconditioning was found to increase the ratio of root: foliar tissue mass and enhance seedling physiological vigor. Specifically, soil moisture content related negatively with new root biomass, positively with new foliar biomass, and negatively with the length and number of new roots ( p <0.001). Meanwhile, the mass of lateral root production following drought preconditioning, but prior to aeroponic growth, correlated weakly to the mass, count, and length of new roots produced during aeroponic growth. We propose that evaluating the importance of the timing of drought preconditioning treatments constitutes an important research frontier in plant science.more » « less
-
Abstract To understand surface biogeophysical processes, accurately evaluating the geographical and temporal fluctuations of soil moisture is crucial. It is well known that the surface soil moisture content (SMC) affects soil reflectance at all solar spectrum wavelengths. Therefore, future satellite missions, such as the NASA Surface Biology and Geology mission, will be essential for mapping and monitoring global soil moisture changes. Our study compares two widely used moisture retrieval models: the multilayer radiative transfer model of soil reflectance (MARMIT) and the soil water parametric (SWAP)‐Hapke model. We evaluated the SMC retrieval accuracy of these models using unmanned aerial systems (UAS) hyperspectral imagery and goniometer hyperspectral data. Laboratory analysis employed hyperspectral goniometer data of sediment samples from four locations reflecting diverse environments, while field validation used hyperspectral UAS imaging and coordinated ground truth collected in 2018 and 2019 from a barrier island beach at the Virginia Coast Reserve Long‐Term Ecological Research site. The (SWAP)‐Hapke model achieves comparable accuracy to MARMIT using laboratory hyperspectral data but is less accurate when applied to UAS hyperspectral imagery than the MARMIT model. We proposed a modified version of the (SWAP)‐Hapke model, which achieves better results than MARMIT when applied to laboratory spectral measurements; however, MARMIT's performance is still more accurate when applied to UAS imagery. These results are likely due to differences in the models' descriptions of multiply‐scattered light and MARMIT's more detailed description of air‐water interactions.more » « less
An official website of the United States government

