skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome organization and botanical diversity
Abstract The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes—both in content and in dynamics—has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.  more » « less
Award ID(s):
2240888
PAR ID:
10503996
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Plant Cell
Volume:
36
Issue:
5
ISSN:
1040-4651
Format(s):
Medium: X Size: p. 1186-1204
Size(s):
p. 1186-1204
Sponsoring Org:
National Science Foundation
More Like this
  1. Alexandre, Gladys (Ed.)
    ABSTRACT Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2 , which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya , which modulates gene expression in pathogenic bacteria, and barA , a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCE Xylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation. 
    more » « less
  2. Abstract Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cottonGossypium hirsutumby sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. 
    more » « less
  3. The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding. 
    more » « less
  4. Abstract Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution. 
    more » « less
  5. Abstract Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks andN6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement. 
    more » « less