skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-polyp metabolomics reveals biochemical structuring of the coral holobiont at multiple scales
Abstract All biology happens in space, and spatial structuring plays an important role in mediating biological processes at all scales from cells to ecosystems. However, the metabolomic structuring of the coral holobiont has yet to be fully explored. Here, we present a method to detect high-quality metabolomic data from individual coral polyps and apply this method to study the patterning of biochemicals across multiple spatial (~1 mm - ~100 m) and organizational scales (polyp to population). The data show a strong signature for individual coral colonies, a weaker signature of branches within colonies, and variation at the polyp level related to the polyps’ location along a branch. Mapping metabolites to either the coral or algal components of the holobiont reveals that polyp-level variation along the length of a branch was largely driven by molecules associated with the cnidarian host as opposed to the algal symbiont, predominantly putative sulfur-containing metabolites. This work yields insights on the spatial structuring of biochemicals in the coral holobiont, which is critical for design, analysis, and interpretation of studies on coral reef biochemistry.  more » « less
Award ID(s):
2307516
PAR ID:
10504075
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer/Nature
Date Published:
Journal Name:
Communications Biology
Volume:
6
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Volatile organic compounds (VOCs) are constituents of marine ecosystems including coral reefs, where they are sources of atmospheric reactivity, indicators of ecosystem state, components of defense strategies, and infochemicals. Most VOCs result from sunlight-related processes; however, their light-driven dynamics are still poorly understood. We studied the spatial variability of a suite of VOCs, including dimethylsulfide (DMS), and the other dimethylsulfoniopropionate-derived compounds (DMSPCs), namely, DMSP, acrylate, and dimethylsulfoxide (DMSO), in waters around colonies of two scleractinian corals ( Acropora pulchra and Pocillopora  sp.) and the brown seaweed  Turbinaria ornata  in Mo’orean reefs, French Polynesia. Concentration gradients indicated that the corals were sources of DMSPCs, but less or null sources of VOCs other than DMS, while the seaweed was a source of DMSPCs, carbonyl sulfide (COS), and poly-halomethanes. A focused study was conducted around an A. pulchra  colony where VOC and DMSPC concentrations and free-living microorganism abundances were monitored every 6 h over 30 h. DMSPC concentrations near the polyps paralleled sunlight intensity, with large diurnal increases and nocturnal decrease. rDNA metabarcoding and metagenomics allowed the determination of microbial diversity and the relative abundance of target functional genes. Seawater near coral polyps was enriched in DMS as the only VOC, plus DMSP, acrylate, and DMSO, with a large increase during the day, coinciding with high abundances of symbiodiniacean sequences. Only 10 cm below, near the coral skeleton colonized by a turf alga, DMSPC concentrations were much lower and the microbial community was significantly different. Two meters down current from the coral, DMSPCs decreased further and the microbial community was more similar to that near the polyps than that near the turf alga. Several DMSP cycling genes were enriched in near-polyp with respect to down-current waters, namely, the eukaryotic DMS production and DMS oxidation encoding genes, attributed to the coral and the algal symbiont, and the prokaryotic DMS production gene dddD , harbored by coral-associated Gammaproteobacteria . Our results suggest that solar radiation-induced oxidative stress caused the release of DMSPCs by the coral holobiont, either directly or through symbiont expulsion. Strong chemical and biological gradients occurred in the water between the coral branches, which we attribute to layered hydrodynamics. 
    more » « less
  2. Abstract Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed ‘coral bleaching’. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne’ohe Bay, Hawai’i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium , the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium . We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral’s stress and bleaching response. 
    more » « less
  3. null (Ed.)
    Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g., sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses, and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont % nitrogen content, endosymbiont densities, and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content cell−1 decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8 °C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly on the mediation of land-based inputs into coastal coral reef ecosystems. 
    more » « less
  4. Abstract Coral reef ecosystems are under threat from the frequent and severe impacts of anthropogenic climate change, particularly rising sea surface temperatures. The effects of thermal stress may be ameliorated by adaptation and/or acclimation of the host, symbiont, or holobiont (host + symbiont) to increased temperatures. We examined the role of the symbiont in promoting thermal tolerance of the holobiont, using Antillogorgia bipinnata (octocoral host) and Breviolum antillogorgium (symbiont) as a model system. We identified five distinct genotypes of B. antillogorgium from symbiont populations isolated from Antillogorgia colonies in the Florida Keys. Three symbiont genotypes were cultured and maintained at 26 °C (ambient historical temperature), and two were cultured and maintained at 30 °C (elevated historical temperature) for 2 yrs. We analyzed the growth rate and carrying capacity of each symbiont genotype at both ambient and elevated temperatures in culture (in vitro). All genotypes grew well at both temperatures, indicating that thermal tolerance exists among these B. antillogorgium cultures. However, a history of long-term growth at 30 °C did not yield better performance for B. antillogorgium at 30 °C (as compared to 26 °C), suggesting that prior culturing at the elevated temperature did not result in increased thermal tolerance. We then inoculated juvenile A. bipinnata polyps with each of the five symbiont genotypes and reared these polyps at both ambient and elevated temperatures ( in hospite experiment). All genotypes established symbioses with polyps in both temperature treatments. Survivorship of polyps at 30 °C was significantly lower than survivorship at 26 °C, but all treatments had surviving polyps at 56 d post-infection. Our results suggest broad thermal tolerance in B. antillogorgium, which may play a part in the increased resilience of Caribbean octocorals during heat stress events. 
    more » « less
  5. Tropical reefs are commonly transitioning from coral to macroalgal dominance, but the role of macroalgae in coral decline remains inadequately understood. A growing body of research suggests that algae may harm corals via disruptions to the homeostasis of the coral holobiont, including resident microbial communities, but the processes that mediate these potential microbial effects and the spatial scales at which they operate are uncertain. Resolving the relative importance and context dependencies of microbially-mediated algal-coral competition is critical for understanding and predicting coral dynamics as reefs further degrade. In this review, we examine the current state of knowledge surrounding algal impacts on corals via disruption of their microbiomes, with a particular focus on the mechanisms hypothesized to mediate microbial effects, the scales at which they are thought to operate, and the evidence from laboratory- and field-based studies for their existence and ecological relevance in the wild. Lastly, we highlight challenges for further advancing the field. 
    more » « less