We present cosmological constraints from a gravitational lensing mass map covering 9400 deg^{2}reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitude
We present tomographic measurements of structure growth using crosscorrelations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲
 NSFPAR ID:
 10504346
 Author(s) / Creator(s):
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
 Publisher / Repository:
 DOI PREFIX: 10.3847
 Date Published:
 Journal Name:
 The Astrophysical Journal
 Volume:
 966
 Issue:
 2
 ISSN:
 0004637X
 Format(s):
 Medium: X Size: Article No. 157
 Size(s):
 ["Article No. 157"]
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract σ _{8}= 0.819 ± 0.015 at 1.8% precision, , and the Hubble constant ${S}_{8}\equiv {\sigma}_{8}{({\mathrm{\Omega}}_{\mathrm{m}}/0.3)}^{0.5}=0.840\pm 0.028$H _{0}= (68.3 ± 1.1) km s^{−1}Mpc^{−1}at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ _{8}= 0.812 ± 0.013, , and ${S}_{8}\equiv {\sigma}_{8}{({\mathrm{\Omega}}_{\mathrm{m}}/0.3)}^{0.5}=0.831\pm 0.023$H _{0}= (68.1 ± 1.0) km s^{−1}Mpc^{−1}. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS _{8}from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σ to 2.1σ . This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz ∼ 0.5–5 on mostly linear scales and galaxy lensing atz ∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑m _{ν}< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of crosscorrelation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming groundbased CMB surveys. 
Abstract We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg^{2}of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43
σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about largescale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofA _{lens}= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra bestfit ΛCDM model andA _{lens}= 1.005 ± 0.023 relative to the ACT DR4 + WMAP bestfit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination of ${S}_{8}^{\mathrm{CMBL}}\equiv {\sigma}_{8}{\left({\mathrm{\Omega}}_{m}/0.3\right)}^{0.25}$ from ACT DR6 CMB lensing alone and ${S}_{8}^{\mathrm{CMBL}}=0.818\pm 0.022$ when combining ACT DR6 and Planck ${S}_{8}^{\mathrm{CMBL}}=0.813\pm 0.018$NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts. 
Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1
σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg^{2}SPTSZ survey and targeted optical and Xray followup data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 ${\sigma}_{8}{\left({\mathrm{\Omega}}_{m}/0.3\right)}^{0.5}=0.831\pm 0.020$σ CMBcluster lensing measurement is included or not. We then forecast the impact of CMBcluster lensing measurements with future cluster catalogs. Adding CMBcluster lensing measurements to the SZ cluster catalog of the ongoing SPT3G survey is expected to improve the expected constraint on the dark energy equation of statew by a factor of 1.3 toσ (w ) = 0.19. We find the largest improvements from CMBcluster lensing measurements to be forσ _{8}, where adding CMBcluster lensing data to the cluster number counts reduces the expected uncertainty onσ _{8}by respective factors of 2.4 and 3.6 for SPT3G and CMBS4. 
Abstract We analyze clustering measurements of BOSS galaxies using a simulationbased emulator of twopoint statistics. We focus on the monopole and quadrupole of the redshiftspace correlation function, and the projected correlation function, at scales of 0.1 ∼ 60
h ^{−1}Mpc. Although our simulations are based onw CDM with general relativity (GR), we include a scaling parameter of the halo velocity field,γ _{f}, defined as the amplitude of the halo velocity field relative to the GR prediction. We divide the BOSS data into three redshift bins. After marginalizing over other cosmological parameters, galaxy bias parameters, and the velocity scaling parameter, we findf σ _{8}(z = 0.25) = 0.413 ± 0.031,f σ _{8}(z = 0.4) = 0.470 ± 0.026, andf σ _{8}(z = 0.55) = 0.396 ± 0.022. Compared with Planck observations using a flat Lambda cold dark matter model, our results are lower by 1.9σ , 0.3σ , and 3.4σ , respectively. These results are consistent with other recent simulationbased results at nonlinear scales, including weak lensing measurements of BOSS LOWZ galaxies, twopoint clustering of eBOSS LRGs, and an independent clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination of . We note, however, that the BOSS data is well fit assuming GR, i.e., ${\gamma}_{f}^{1/2}{\sigma}_{8}\approx 0.75$γ _{f}= 1. We cannot rule out an unknown systematic error in the galaxy bias model at nonlinear scales, but nearfuture data and modeling will enhance our understanding of the galaxy–halo connection, and provide a strong test of new physics beyond the standard model. 
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volumeaveraged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\lesssim {10}^{3}$ ). In particular, the neutral fraction evolution of the IGM at the critical redshift range of ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\sim 1$z = 6–7 is poorly constrained. We present new constraints on at ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$z ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive modelindependent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first modelindependent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.3)<0.79\pm 0.04$σ ), (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.5)<0.87\pm 0.03$σ ), and (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.7)<{0.94}_{0.09}^{+0.06}$σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.