A new approach for the reduction of aryl ammonium salts to arenes or aryl silanes using nickel catalysis is reported. This method displays excellent ligand-controlled selectivity based on the N-heterocyclic carbene (NHC) ligand employed. Utilizing a large NHC in non-polar solvents generates aryl silanes, while small NHCs in polar solvents promote reduction to arenes. Several classes of aryl silanes can be accessed from simple aniline building blocks, including those useful for cross-couplings, oxidations, and halogenations. The reaction conditions are mild, functional group tolerant, and provide efficient access to a variety of benzene derivatives.
more »
« less
Photochemically Driven Nickel‐Catalyzed Carboxylative C−N Coupling: Scope and Mechanism
Herein we disclosed an unprecedented photochemically driven nickel‐catalyzed carboxylative Buchwald–Hartwig amination to access a wide range of aryl carbamate derivatives. This reaction is performed under mild condition of temperature and atmospheric pressure of CO2 starting from commercially available (hetero)aryl iodides/bromides derivatives and alkyl amines preventing the formation of hazardous and/or toxic waste. Moreover, preliminary mechanistic investigations including stochiometric experiments as well as DFT calculations allow us to shed light on the reaction mechanism.
more »
« less
- Award ID(s):
- 2247505
- PAR ID:
- 10504407
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 44
- ISSN:
- 0947-6539
- Page Range / eLocation ID:
- e202301271
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A late-stage α-C–H functionalization reaction of resin-bound, electron-rich N -aryl peptides with boronic acid nucleophiles under mild conditions is reported. We explore the impact of the N -arylglycinyl peptide structure on reactivity, and present a scope of the optimized reaction where both the peptide sequence and nature of boronic acid derivatives are varied.more » « less
-
Abstract N‐phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiopheneS‐oxide upon irradiation with UV‐A light, and dibenzothiopheneS‐oxide upon further irradiation releases triplet atomic oxygen. Thus,N‐phenyl dibenzothiophene sulfoximine exhibits a rare dual‐release capability in its photochemistry. In this work,N‐substituted dibenzothiophene sulfoximine derivatives are irradiated with UV‐A light to compare their photochemistry and quantum yield of dibenzothiopheneS‐oxide production with that ofN‐phenyl dibenzothiophene sulfoximine. BothN‐aryl andN‐alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawingN‐aryl substituents is shown to increase the quantum yield of dibenzothiopheneS‐oxide production, while adding electron donatingN‐aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by mostN‐alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with theN‐alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction.more » « less
-
Abstract The direct synthesis of α‐sulfonyl ketones was accomplished by a multicomponent reaction of styrene derivatives, anilines,t‐butyl nitrite, 1,4‐diazabicyclo[2.2.2]octane‐sulfur dioxide (DABSO), and oxygen catalyzed by salicylic acid. The aryl radicals generated from aniline derivatives andt‐butyl nitrite under the catalysis of salicylic acid was sulfonylated by DABSO to generate the arylsulfonyl radicals, which reacted further with styrenes, and then oxidized by oxygen to give the title compounds. Under the optimized conditions, the title compounds were obtained in good yields at ambient temperature within 1.5–2 h.more » « less
-
4,6-O-Benzylidene acetal protected α-methoxy d-glucose and d-glucosamine are useful building blocks for the syntheses of carbohydrate derivatives and functional molecular assemblies. In this research, we have developed a general method for the preparation of C-3 carbamate derivatives of densely functionalized glucose and glucosamine with isocyanates using organic bases as catalysts. Without a suitable catalyst, the C-3 hydroxy group of the glucosamine derivative could not be converted into the corresponding carbamates when treated with isocyanates. Several organic bases were screened as the catalysts for the reactions, and we discovered that 5.0 mol% of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was an effective catalyst for the carbamoylation reaction. A library of both alkyl and aryl carbamate derivatives of the two sterically congested carbohydrates have been effectively synthesized using the current method.more » « less