skip to main content


This content will become publicly available on February 1, 2025

Title: Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2

This study reports, for the first time, the utilization of two-dimensional (2D) tellurium (Te) nanosheets for the efficient nonenzymatic detection of hydrogen peroxide (H2O2). H2O2 acts as a pivotal biomarker with widespread applications across environmental, biological, industrial, and food processing domains. However, an excessive accumulation of H2O2 in the body poses a severe threat to human life. Consequently, the imperative need for a selective, sensitive, and cost-effective sensing platform for H2O2 detection has gained paramount significance. Employing a low-cost and straightforward hydrothermal method, Te nanosheets were synthesized to address the escalating demand for a reliable detection platform. The as-synthesized Te nanosheets are characterized through Raman spectroscopy and atomic force microscopy techniques. The electrochemical performance of the Te nanosheets integrated onto a glassy carbon (Te-GC) electrode was thoroughly investigated using cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. The experiments were designed to evaluate the response of the Te-GC electrode in the presence and absence of H2O2, alongside its performance in the detection of other pertinent interfering analytes. The sensor shows a limit of detection of 0.47 µM and a sensitivity of 27.2 µA µM−1 cm−2 towards H2O2. The outcomes of this study demonstrate the efficacy of Te nanosheets as a promising material for nonenzymatic H2O2 detection in urine samples. The simplicity and cost-effectiveness of the hydrothermal synthesis process, coupled with the notable electrochemical performance of the Te/GC electrode, highlight the potential of Te nanosheets in the development of a robust sensing platform. This research contributes to the ongoing efforts to enhance our capabilities in monitoring and detecting H2O2, fostering advancements in environmental, biomedical, and industrial applications.

 
more » « less
Award ID(s):
2122044
NSF-PAR ID:
10504443
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI, Basel, Switzerland
Date Published:
Journal Name:
Chemosensors
Volume:
12
Issue:
2
ISSN:
2227-9040
Page Range / eLocation ID:
17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cost-effective valorization of biomass into advanced carbon remains a challenge. Here we reported a facile and ultrafast laser writing technique to convert biomass into porous graphene for electrochemical sensing. Laser-induced graphene (LIG) was synthesized from a fully biomass-based film composed of kraft lignin (KL) and cellulose nanofibers (CNFs). The LIG-based electrode was applied to detect dopamine using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Dopamine with a concentration ranging from 5 to 40 μM was detected linearly, with a sensitivity of 4.39 μA μM −1 cm −2 . Our study eliminated the use of synthetic polymer for lignin-based film formation. It demonstrated the feasibility of using the film fully composed of biomass for LIG formation. Furthermore, derived LIG electrodes were shown to have high electrochemical sensing performance. 
    more » « less
  2. Abstract     Organophosphorus pesticides are widely used in industrial agriculture and have been associated with water pollution and negative impacts on local ecosystems and communities. There is a need for testing technologies to detect the presence of pesticide residues in water sources, especially in developing countries where access to standard laboratory methods is cost prohibitive. Herein, we outline the development of a facile electrochemical sensor for amperometric determination of organophosphorus pesticides in environmental water samples. A three-electrode system was fabricated via UV laser-inscribing on a polyimide film. The working electrode was functionalized with copper nanoparticles with affinity toward organophosphate compounds. The sensor showed a limit of detection (LOD) of 3.42 ± 1.69 µM for glyphosate, 7.28 ± 1.20 µM for glufosinate, and 17.78 ± 7.68 µM for aminomethylphosphonic acid (AMPA). Sensitivity was highest for glyphosate (145.52 ± 36.73 nA⋅µM −1 ⋅cm −2 ) followed by glufosinate (56.98 ± 10.87 nA⋅µM −1 ⋅cm −2 ), and AMPA (30.92 ± 8.51 nA⋅µM −1 ⋅cm −2 ). The response of the sensor is not significantly affected by the presence of several ions and organic molecules commonly present in natural water samples. The developed sensor shows promising potential for facilitating environmental monitoring of organophosphorus pesticide residues, which is a current need in several parts of the world. Graphical Abstract 
    more » « less
  3. Glucose biosensors are widely used for clinical, industrial, and environmental applications. Nonenzymatic electrochemical glucose biosensors based on metal oxides with a perovskite structure have exhibited high sensitivity, excellent stability, and cost efficiency. In this work, porous La–Sr–Co–Ni–O (LSCNO) nanofibers, with an ABO 3 -type perovskite structure, were prepared through optimizing the A-site and B-site elements by electrospinning, followed with calcination at 700 °C for 5 h. Characterized by scanning and transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, fabricated nanofibers were confirmed to be porous and nanosized polycrystalline grains with high crystallinity. A novel La 0.75 Sr 0.25 Co 0.5 Ni 0.5 O 3 -based nonenzymatic electrochemical biosensor was developed, which is sensitive to glucose because of an electrochemically catalytic mechanism, a mediated electron transfer involving Ni( ii )/Ni( iii ) or Co( ii )/Co( iii ), accompanying with gluconic acid complexation. The glucose biosensor presented a linear response in the range of 0.1–1.0 mM with a calibration sensitivity of 924 ± 28 μA mM −1 , a proportion of the variance of 0.9926, and a lower limit of detection of 0.083 mM, respectively, demonstrating an outstanding analytical performance. The biosensor showed no response to the most widely used anionic surfactant, sodium dodecyl sulfate, and low sensitivity to other biomolecules, such as fructose, lactose, galactose, mannose, dopamine, and ascorbic acid. A urine sample was tested by this novel nonenzymatic electrochemical biosensor by standard addition method, suggesting a potential application for clinical test. 
    more » « less
  4. A novel electrochemical dopamine sensor was fabricated based on a composite film solely consisting of kappa-carrageenan and hierarchical porous carbon drop-casted onto a glassy carbon electrode in a conventional three electrode system. Graphene oxide was synthesized in a one-step thermal conversion from base-catalyzed alkali lignin. Five ratios by mass of a novel hierarchical porous activated carbon and kappa-carrageenan were studied for dopamine quantification without synthetic binders such as polytetrafluoroethylene. Various tests were performed to explicate structure and electrochemical properties of the films. Utilizing differential pulse voltammetry for detection, the optimized 10:1 ratio system elicited a linear range of 1–250μmol l−1and a limit of detection of 0.14μmol l−1(S/N = 3). Results suggested an effective new combination of materials for non-enzymatic dopamine sensing.

     
    more » « less
  5. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less