skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Study on Sampling Based Algorithms for Network Reliability Assessment
Infrastructure networks, such as electrical power grids, transportation and water supply systems, support critical societal functions of society. Failures of such networks can have severe consequences, and quantification of the probability of failure of such systems is essential for understanding and managing their reliability. Analytical and simulation methods have been proposed to solve such kinds of problems, among which sampling methods feature prominently. Recently, the authors extended widely used structural reliability algorithms, subset simulation, cross-entropy-based importance sampling as well as uncertainty quantification methods built from particle integration methods and exact confidence, all for efficient reliability analysis in discrete spaces. This paper tests the performance of these algorithms for static network reliability assessment. In particular, we compare these methods for optimal power flow problems in various IEEE benchmark models. Overall, the cross-entropy-based method outperforms the other methods in all benchmark models except the largest IEEE 300, while the adaptive effort subset simulation and particle integration methods are more suitable for handling high-dimensional problems. By building up the benchmark models, we provide unified examples for comparing different emerging methods in static network reliability assessment and also to support improvement or combination of these methods.  more » « less
Award ID(s):
2037545
PAR ID:
10504463
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
edepositIreland
Date Published:
Journal Name:
Proceedings of the 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li, J.; Spanos, P. D.; Chen, J. B.; Peng, Y. B. (Ed.)
    Infrastructure networks offer critical services to modern society. They dynamically interact with the environment, operators, and users. Infrastructure networks are unique engineered systems, large in scale and high in complexity. One fundamental issue for their reliability assessment is the uncertainty propagation from stochastic disturbances across interconnected components. Monte Carlo simulation (MCS) remains approachable to quantify stochastic dynamics from components to systems. Its application depends on time efficiency along with the capability of delivering reliable approximations. In this paper, we introduce Quasi Monte Carlo (QMC) sampling techniques to improve modeling efficiency. Also, we suggest a principled Monte Carlo (PMC) method that equips the crude MCS with Probably Approximately Correct (PAC) approaches to deliver guaranteed approximations. We compare our proposed schemes with a competitive approach for stochastic dynamic analysis, namely the Probability Density Evolution Method (PDEM). Our computational experiments are on ideal but complex enough source-terminal (S-T) dynamic network reliability problems. We endow network links with oscillators so that they can jump across safe and failed states allowing us to treat the problem from a stochastic process perspective. We find that QMC alone can yield practical accuracy, and PMC with a PAC algorithm can deliver accuracy guarantees. Also, QMC is more versatile and efficient than the PDEM for network reliability assessment. The QMC and PMC methods provide advanced uncertainty propagation techniques to support decision makers with their reliability problems. 
    more » « less
  2. Golpira, Hemin (Ed.)
    The paper proposes an approach for fast small signal stability assessment on a short data window using deep learning algorithms. This paper shows that the proposed deep convolutional neural networks (CNNs)-based assessment approach is faster than traditional methods (i.e. Prony’s method). The evaluated CNNs are fully convolutional network (FCN), CNN with sub-sampling steps performed through max pooling (Time LeNet), time CNN, fully convolutional network with attention mechanism (Encoder), and CNN with a shortcut residual connection (ResNet). The proposed approach is validated on different synthetic measurement data sets generated from the IEEE 9-bus system that is used as a reference, and further applied to a 769-bus system representing a region in the U. S. Eastern Interconnection. We show that precision and recall are more informative metrics than accuracy for the reliability of the stability assessment process using the proposed methodology. In addition, the method’s efficiency is compared to classical Prony method. 
    more » « less
  3. Abstract This paper explores the use of autonomous underwater vehicles (AUVs) equipped with sensors to construct water quality models to aid in the assessment of important environmental hazards, for instance related to point‐source pollutants or localized hypoxic regions. Our focus is on problems requiring the autonomous discovery and dense sampling of critical areas of interest in real‐time, for which standard (e.g., grid‐based) strategies are not practical due to AUV power and computing constraints that limit mission duration. To this end, we consider adaptive sampling strategies on Gaussian process (GP) stochastic models of the measured scalar field to focus sampling on the most promising and informative regions. Specifically, this study employs the GP upper confidence bound as the optimization criteria to adaptively plan sampling paths that balance a trade‐off between exploration and exploitation. Two informative path planning algorithms based on (i) branch‐and‐bound techniques and (ii) cross‐entropy optimization are presented for choosing future sampling locations while considering the motion constraints of the sampling platform. The effectiveness of the proposed methods are explored in simulated scalar fields for identifying multiple regions of interest within a three‐dimensional environment. Field experiments with an AUV using both virtual measurements on a known scalar field and in situ dissolved oxygen measurements for studying hypoxic zones validate the approach's capability to quickly explore the given area, and then subsequently increase the sampling density around regions of interest without sacrificing model fidelity of the full sampling area. 
    more » « less
  4. Abstract Buildings use a large amount of energy in the United States. It is important to optimally manage and coordinate the resources across building and power distribution networks to improve overall efficiency. Optimizing the power grid with discrete variables was very challenging for traditional computers and algorithms, as it is an NP-hard problem. In this study, we developed a new optimization solution based on quantum computing for BTG integration. We first used MPC for building loads connected with a commercial distribution grid for cost reduction. Then we used discretization and Benders Decomposition methods to reformulate the problem and decompose the continuous and discrete variables, respectively. We used D-Wave quantum computer to solve dual problems and used conventional algorithm for primal problems. We applied the proposed method to an IEEE 9-bus network with 3 commercial buildings and over 300 residential buildings to evaluate the feasibility and effectiveness. Compared with traditional optimization methods, we obtained similar solutions with some fluctuations and improved computational speed from hours to seconds. The time of quantum computing was greatly reduced to less than 1% of traditional optimization algorithm and software such as MATLAB. Quantum computing has proved the potential to solve large-scale discrete optimization problems for urban energy systems. 
    more » « less
  5. It is well known that interdependence between electric power systems and other infrastructures can impact energy reliability and resilience, but it is less clear which particular interactions have the most impact. There is a need for methods that can rank the relative importance of these interdependencies. This paper describes a new tool for measuring resilience and ranking interactions. This tool, known as Computing Resilience of Infrastructure Simulation Platform (CRISP), samples from historical utility data to avoid many of the assumptions required for simulation-based approaches to resilience quantification. This paper applies CRISP to rank the relative importance of four types of interdependence (natural gas supply, communication systems, nuclear generation recovery, and a generic restoration delay) in two test cases: the IEEE 39-bus test case and a 6394-bus model of the New England/New York power grid. The results confirm industry studies suggesting that a loss of the natural gas system is the most severe specific interdependence faced by this region. 
    more » « less