- Award ID(s):
- 2154726
- NSF-PAR ID:
- 10504466
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Chemical Reviews
- Volume:
- 123
- Issue:
- 16
- ISSN:
- 0009-2665
- Page Range / eLocation ID:
- 10381 to 10431
- Subject(s) / Keyword(s):
- Site-selective catalysis biocatalysis chemoenzymatic C-H functionalization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Halocyclization of alkenes is a powerful bond-forming tool in synthetic organic chemistry and a key step in natural product biosynthesis, but catalyzing halocyclization with high enantioselectivity remains a challenging task. Identifying suitable enzymes that catalyze enantioselective halocyclization of simple olefins would therefore have significant synthetic value. Flavin-dependent halogenases (FDHs) catalyze halogenation of arene and enol(ate) substrates. Herein, we reveal that FDHs engineered to catalyze site-selective aromatic halogenation also catalyze non-native bromolactonization of olefins with high enantioselectivity and near-native catalytic proficiency. Highly selective halocyclization is achieved by characterizing and mitigating the release of HOBr from the FDH active site using a combination of reaction optimization and protein engineering. The structural origins of improvements imparted by mutations responsible for the emergence of halocyclase activity are discussed. This expansion of FDH catalytic activity presages the development of a wide range of biocatalytic halogenation reactions.more » « less
-
Abstract FeII‐ and α‐ketoglutarate‐dependent halogenases and oxygenases can catalyze site‐selective functionalization of C−H bonds via a variety of C−X bond forming reactions, but achieving high chemoselectivity for functionalization using non‐native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site‐selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C−H functionalization with other non‐native functional groups.
-
Abstract FeII‐ and α‐ketoglutarate‐dependent halogenases and oxygenases can catalyze site‐selective functionalization of C−H bonds via a variety of C−X bond forming reactions, but achieving high chemoselectivity for functionalization using non‐native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site‐selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C−H functionalization with other non‐native functional groups.
-
Abstract Single component flavin‐dependent halogenases (FDHs) possess both flavin reductase and FDH activity in a single enzyme. We recently reported that the single component FDH AetF catalyzes site‐selective bromination and iodination of a variety of aromatic substrates and enantioselective bromolactonization and iodoetherification of styrenes bearing pendant carboxylic acid or alcohol substituents. Given this inherent reactivity and selectivity, we explored the utility of AetF as catalyst for alkene and alkyne C−H halogenation. We find that AetF catalyzes halogenation of a range of 1,1‐disubstituted styrenes, often with high stereoselectivity. Despite the utility of haloalkenes for cross‐coupling and other applications, accessing these compounds in a stereoselective manner typically requires functional group interconversion processes, and selective halogenation of 1,1′‐disubstituted olefins remains rare. We also establish that AetF and homologues of this enzyme can halogenate terminal alkynes. Mutagenesis studies and deuterium kinetic isotope effects are used to support a mechanistic proposal involving covalent catalysis for halogenation of unactivated alkynes by AetF homologues. These findings expand the scope of FDH catalysis and continue to show the unique utility of single component FDHs for biocatalysis.
-
Abstract Single component flavin‐dependent halogenases (FDHs) possess both flavin reductase and FDH activity in a single enzyme. We recently reported that the single component FDH AetF catalyzes site‐selective bromination and iodination of a variety of aromatic substrates and enantioselective bromolactonization and iodoetherification of styrenes bearing pendant carboxylic acid or alcohol substituents. Given this inherent reactivity and selectivity, we explored the utility of AetF as catalyst for alkene and alkyne C−H halogenation. We find that AetF catalyzes halogenation of a range of 1,1‐disubstituted styrenes, often with high stereoselectivity. Despite the utility of haloalkenes for cross‐coupling and other applications, accessing these compounds in a stereoselective manner typically requires functional group interconversion processes, and selective halogenation of 1,1′‐disubstituted olefins remains rare. We also establish that AetF and homologues of this enzyme can halogenate terminal alkynes. Mutagenesis studies and deuterium kinetic isotope effects are used to support a mechanistic proposal involving covalent catalysis for halogenation of unactivated alkynes by AetF homologues. These findings expand the scope of FDH catalysis and continue to show the unique utility of single component FDHs for biocatalysis.