skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How do we design curricula to foster innovation, motivation, and interest in STEM learning?
Abstract Purpose The authors designed a science and engineering curricular program that includes design features that promote student interest and motivation and examined teachers' and students' views on meaningfulness, motivation and interest. Design/methodology/approach The research approach consisted of mixed methods, including content analyses and descriptive statistics. Findings The curricular program successfully included all four of the US National Academies of Sciences' design features for promoting interest and motivation through scientific investigation and engineering design. During interviews, teachers and students expressed evidence of design features associated with interest and motivation. After experiencing the program, more than 60% of all students scored high on all four science and engineering meaningfulness and interest survey items. Originality/value A curricular program that extends science learning through the engineered design of solutions is an innovative approach to foster both conceptual knowledge development and interest and motivation in science and engineering.  more » « less
Award ID(s):
2125844
PAR ID:
10504502
Author(s) / Creator(s):
; ; ;
Editor(s):
Emerald Insight
Publisher / Repository:
Emerald Insight
Date Published:
Journal Name:
Journal of Research in Innovative Teaching and Learning
ISSN:
2397-7604
Subject(s) / Keyword(s):
Engineering design science education scientific investigation 21st century skills
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose We designed a science and engineering curricular program that includes design features that promote student interest and motivation and examined teacher and students’ views on meaningfulness, motivation, and interest. Design/methodology/approach The research approach consisted of mixed methods including content analyses and descriptive statistics. Findings The curricular program successfully included all four of the US National Academies of Sciences’ design features for promoting interest and motivation through scientific investigation and engineering design. During interviews, teachers and students expressed evidence of design features associated with interest and motivation. After experiencing the program, more than 60% of all students scored high on all four science and engineering meaningfulness and interest survey items. Originality A curricular program that extends science learning through the engineered design of solutions is an innovative approach to foster both conceptual knowledge development and interest and motivation in science and engineering. 
    more » « less
  2. While our world consistently presents complicated, interdisciplinary problems with STEM foundations, most pre-university curricula do not encourage drawing on multidisciplinary knowledge in the sciences and engineering to create solutions. We developed an instructional approach, Iterative Science and Engineering (ISE), that cycles through scientific investigation and engineering design and culminates in constructing a solution to a local environmental challenge. Next, we created, revised, and evaluated a six-week ISE curricular program, Invasive Insects, culminating in 6th–9th-grade students building traps to mitigate local invasive insect populations. Over three Design-Based Research (DBR) cycles, we gathered and analyzed identical pre and post-test data from 554 adolescents to address the research question: what three-dimensional (3D) science and engineering knowledge do adolescents demonstrate over three DBR cycles associated with a curricular program following the Iterative Science and Engineering instructional approach? Results document students’ significant statistical improvements, with differential outcomes in different cycles. For example, most students demonstrated significant learning of 3D science and engineering argument construction in all cycles—still, students only significantly improved engineering design when they performed guided reflection on their designs and physically built a second trap. Our results suggest that the development, refinement, and empirical evaluation of an ISE curricular program led to students’ design, building, evaluation, and sharing of their learning of mitigating local invasive insect populations. To address complex, interdisciplinary challenges, we must provide opportunities for fluid and iterative STEM learning through scientific investigation and engineering design cycles. 
    more » « less
  3. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  4. WIP: The Mechanical Engineering (ME) Department at Seattle University was awarded a 2017 NSF RED (Revolutionizing Engineering and Computer Science Departments) grant. This award provided the opportunity to create a program where students and faculty are immersed in a culture of doing engineering with practicing engineers that in turn fosters an identity of being an engineer. Of the many strategies implemented to support this goal, one significant curricular change was the creation of a new multi-year design course sequence. This set of three courses, the integrated design project (IDP) sequence, creates an annual curricular-driven opportunity for students to interact with each other and professional engineers in the context of an open-ended design project. These three courses are offered to all departmental first-, second-, and third-year students simultaneously during the spring quarter each year. Each course consists of design-focused classroom instruction tailored to that class year, and a term design project that is completed by teams of students drawn from all three class years. This structure provides students with regular design education, while also creating a curricular space for students across the department to interact with and learn from one of another in a meaningful way. This structure not only prepares students for their senior design experience, but also builds a sense of community and belonging in the department. Furthermore, to support the "engineering with engineers" vision, volunteer engineers from industry participate as consultants in the design project activities, giving students the opportunity to learn from professionals regularly throughout their entire four years in the program. This course sequence was offered for the first time in 2020, and while the global pandemic impacted the experience, the initial offering was by all accounts a success. This paper provides an overview of the motivation for the three IDP courses, their format, objectives, and specific implementation details, and a discussion of some of the lessons learned. These particulars provide other engineering departments with a roadmap for how to implement this type of a curricular experience in their own programs. 
    more » « less
  5. The global pandemic and climate change have led to unprecedented environmental, social, and economic challenges with interdisciplinary STEM foundations. Even as STEM learning has never been more important, very few pre-college programs prepare students to address these challenges by emphasizing socio-scientific issue (SSI) problem solving and the engineering design of solutions to address local phenomena. The paper discusses the design and evaluation of a pre-college, SSI curricular unit where students expand their learning by creating solutions to increase biodiversity within local urban neighborhoods. The learning approach, which we call eco-solutioning, builds from current vision and policy documents in STEM education emphasizing phenomenon-centric instructional materials, science investigations, and engineering design. The paper outlines design principles for creating an eco-solutioning instructional unit that guides young students to: collect and analyze data on local organisms, use an engineering design approach to craft solutions to increase local biodiversity, and present their solutions to local city planners and community members. Two cycles of research studies evaluated student learning using paired t-tests. Results demonstrated significant pre-post learning outcomes in both research cycles. A third research cycle in the form of a summer extension program supported students as they implemented their local solutions. Conclusions highlight design principles for the successful creation of SSI curricular units centered on local environmental issues of interest to students, teachers, and stakeholders. 
    more » « less