skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of the need for galactofuranose during the Neurospora crassa life cycle
Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases.  more » « less
Award ID(s):
2125018
PAR ID:
10504513
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fungal Genetics and Biology
Volume:
168
Issue:
C
ISSN:
1087-1845
Page Range / eLocation ID:
103826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown. Using inhibitor (kifunensine, KIF) hypersensitivity as read out, we identified Arabidopsis mutants that require complex N-glycan modification. Among >100 KIF-sensitive mutants, one showing abnormal secretory organelles and a salt-sensitive phenotype contained a point mutation leading to amino acid replacement (G69R) in ARFA1E, a small Arf1-GTPase family protein presumably involved in vesicular transport. In vitro assays showed that the G69R exchange interferes with protein activation. In vivo, ARFA1EG69R caused dominant-negative effects, altering the morphology of the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). Post-Golgi transport (endocytosis/endocytic recycling) of the essential glycoprotein KORRIGAN1, one of the KIF sensitivity targets, is slowed down constitutively as well as under salt stress in the ARFA1EG69R mutant. Because regulated cycling of plasma membrane proteins is required for stress tolerance of the host plants, the ARFA1EG69R mutant established a link between KIF-targeted luminal glycoprotein functions/dynamics and cytosolic regulators of vesicle transport in endosome-/cell wall-associated tolerance mechanisms. 
    more » « less
  2. null (Ed.)
    UDP-glycosyltransferases (UGTs) are important conjugation enzymes found in all kingdoms of life, catalyzing a sugar conjugation with small lipophilic compounds and playing a crucial role in detoxification and homeostasis. The UGT gene family is defined by a signature motif in the C-terminal domain where the uridine diphosphate (UDP)-sugar donor binds. UGTs have been identified in a number of insect genomes over the last decade and much progress has been achieved in characterizing their expression patterns and molecular functions. Here, we present an update of the complete repertoire of UGT genes in Drosophila melanogaster and provide a brief overview of the latest research in this model insect. A total of 35 UGT genes are found in the D. melanogaster genome, localized to chromosomes 2 and 3 with a high degree of gene duplications on the chromosome arm 3R. All D. melanogaster UGT genes have now been named in FlyBase according to the unified UGT nomenclature guidelines. A phylogenetic analysis of UGT genes shows lineage-specific gene duplications. Analysis of anatomical and induced gene expression patterns demonstrate that some UGT genes are differentially expressed in various tissues or after environmental treatments. Extended searches of UGT orthologs from 18 additional Drosophila species reveal a diversity of UGT gene numbers and composition. The roles of Drosophila UGTs identified to date are briefly reviewed, and include xenobiotic metabolism, nicotine resistance, olfaction, cold tolerance, sclerotization, pigmentation, and immunity. Together, the updated genomic information and research overview provided herein will aid further research in this developing field. 
    more » « less
  3. null (Ed.)
    UDP-glycosyltransferases (UGTs) are important conjugation enzymes found in all kingdoms of life, catalyzing a sugar conjugation with small lipophilic compounds and playing a crucial role in detoxification and homeostasis. The UGT gene family is defined by a signature motif in the C-terminal domain where the uridine diphosphate (UDP)-sugar donor binds. UGTs have been identified in a number of insect genomes over the last decade and much progress has been achieved in characterizing their expression patterns and molecular functions. Here, we present an update of the complete repertoire of UGT genes in Drosophila melanogaster and provide a brief overview of the latest research in this model insect. A total of 35 UGT genes are found in the D. melanogaster genome, localized to chromosomes 2 and 3 with a high degree of gene duplications on the chromosome arm 3R. All D. melanogaster UGT genes have now been named in FlyBase according to the unified UGT nomenclature guidelines. A phylogenetic analysis of UGT genes shows lineage-specific gene duplications. Analysis of anatomical and induced gene expression patterns demonstrate that some UGT genes are differentially expressed in various tissues or after environmental treatments. Extended searches of UGT orthologs from 18 additional Drosophila species reveal a diversity of UGT gene numbers and composition. The roles of Drosophila UGTs identified to date are briefly reviewed, and include xenobiotic metabolism, nicotine resistance, olfaction, cold tolerance, sclerotization, pigmentation, and immunity. Together, the updated genomic information and research overview provided herein will aid further research in this developing field. 
    more » « less
  4. The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates. 
    more » « less
  5. Abstract Insulin is a peptide hormone that is secreted in Golgi-derived dense-core vesicles from mammalian pancreatic beta-cells in response to nutrients. InDrosophila melanogaster, three insulin-like peptides are secreted as neuropeptides from the insulin-producing cells in the brain. Peroxisomes are lipid-metabolizing organelles that engage into various membrane contact sites with other organelles. Impaired peroxisomal metabolism has been associated with beta-cell apoptosis and impaired insulin secretion. How peroxisomes contribute to insulin and neuropeptide secretion is unknown. Here we demonstrate that peroxisomes interact with the Golgi apparatus inDrosophilainsulin-producing cells. Secretion of insulin-like peptide 2 is cell-intrinsically impaired in mutants lacking the peroxisome assembly factor Pex19. Loss of peroxisomes shifts the profile of sphingolipids towards longer sphingoid bases and leads to accumulation of sphingolipids in the Golgi. We show that peroxisomes dynamically interact with the Golgi in insulin-producing cells and that Pex19 directly contributes to peroxisome-Golgi interaction via the fatty acyl-CoA reductase FAR2/waterproof in the peroxisomal membrane. We propose that this peroxisome-Pex19-Golgi axis is required to adjust Golgi membranes upon starvation by withdrawing lipids with longer side chains, thereby optimizing Golgi membrane flexibility for dense-core vesicle secretion upon refeeding. 
    more » « less