Abstract Snow algal blooms frequently occur throughout alpine and polar environments during spring and summer months; however, our understanding of bloom dynamics is limited. We tracked a recurrent bloom of Chlainomonas sp. on Upper Bagley Lake in the North Cascade Mountains, USA, to assess the spatiotemporal dynamics in bloom color intensity, community photophysiology, and community composition over eight weeks. We found that the algae biomass had a dynamic patchy distribution over space and time, which was decoupled from changes in community composition and life-cycle progress averaged across the bloom. The proportional representation of Chlainomonas sp. remained consistent throughout the study while the overall community composition shows a progression through the bloom. We found that community photophysiology, measured by the maximum quantum yield of PSII (Fv/Fm), decreased on average throughout the bloom. These findings suggest that the Chlainomonas sp. community on Bagley Lake is not simply an algal bloom with rapid increase in biomass followed by a population crash, as is often seen in aquatic systems, though there is a physiological trajectory and sensitivity to environmental stress. These results contribute to our understanding of the biology of Chlainomonas sp. and its response to environmental stress, specifically an extreme warming event.
more »
« less
Hypothesized life cycle of the snow algae Chlainomonas sp. (Chlamydomonadales, Chlorophyta) from the Cascade Mountains, USA
Abstract Chlainomonas(Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. NoChlainomonasspecies have been successfully cultured in the laboratory, but diverse cell types have been observed from many field‐collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017–2023), we observed seasonal blooms dominated by aChlainomonasspecies from late spring through the summer months on a snow‐on‐lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley LakeChlainomonasis distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in otherChlainomonasspecies, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles.
more »
« less
- PAR ID:
- 10504692
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 0022-3646
- Format(s):
- Medium: X Size: p. 724-740
- Size(s):
- p. 724-740
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Microalgae adapted to near‐zero temperatures and high light levels live on snowfields and glaciers worldwide. Snow algae have red‐colored pigments that darken snow surfaces, lowering its albedo and accelerating snowmelt. Despite their importance to the cryosphere, we know little about controls on snow algal productivity and biomass.Here, we characterize photophysiology from diverse natural field‐collected populations of alpine snow algae from the North Cascades of Washington, USA, where the major red‐bloom producing generaChlainomonas,Sanguina, andRosettawere present. We tested short‐term physiological responses of snow algae to light (0–3000 μmol m−2 s−1) and CO2levels (0–1600 ppm), allowing us to determine the saturating light and CO2levels for snow algal community net photosynthesis.All snow algal communities surveyed were adapted to extremely high light levels (3000 μmol m−2 s−1). In addition, photosynthesis rates of all the snow algal communities responded strongly to increasing CO2levels. At current atmospheric CO2levels (420 ppm), snow algal net photosynthesis rates were onlyc.50% saturated.Together, these results suggest the primary productivity of important bloom‐forming snow algal communities in alpine ecosystems will likely rise as atmospheric CO2concentrations increase, regardless of potential changes in available light levels.more » « less
-
ABSTRACT Snow algal blooms decrease snow albedo and increase local melt rates. However, the causes behind the size and frequency of these blooms are still not well understood. One factor likely contributing is nutrient availability, specifically nitrogen and phosphorus. The nutrient requirements of the taxa responsible for these blooms are not known. Here, we assessed the growth of three commercial strains of snow algae under 24 different nutrient treatments that varied in both absolute and relative concentrations of nitrogen and phosphorus. After 38 days of incubation, we measured total biomass and cell size and estimated their effective albedo reduction surface. Snow algal strains tended to respond similarly and achieved bloom‐like cell densities over a wide range of nutrient conditions. However, the molar ratio of nitrogen to phosphorus at which maximum biomass was achieved was between 4 and 7. Our data indicate a high requirement for phosphorus for snow algae and highlights phosphorus availability as a critical factor influencing the frequency and extent of snow algae blooms and their potential contribution to snow melt through altered albedo. Snow algae can thrive across a range of nitrogen (N) and phosphorus (P) conditions, with a higher P requirement for optimal growth. Our study suggests that increased N deposition may have a limited impact on snow algae bloom occurrence and size, emphasising P as a key factor influencing these blooms and their potential to accelerate snow melt by lowering albedo.more » « less
-
Abstract The ∼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, ∼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.more » « less
-
Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophytePhaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone speciesP. antarcticaremain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response ofP. antarcticato a matrix of Fe-B12conditions. We show thatP. antarcticais not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiplePhaeocystisspecies and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding thatP. antarcticahas a flexible B12metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.more » « less
An official website of the United States government
