skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring a De Novo Route to Bradyrhizose: Synthesis and Isomeric Equilibrium of Bradyrhizose Diastereomers ≠
Abstract Ade novoasymmetric strategy for the synthesis ofd‐bradyrhizose diastereomers from an achiral ketoenolester precursor is described. Key transformations used in the stereodivergent approach include two Noyori asymmetric reductions, an Achmatowicz rearrangement, diastereoselective alkene oxidations, and the first example of a palladium(0)‐catalyzed glycosylation of a vinylogous pyranone. The isomeric composition of the bicyclic reducing sugars obtained was analyzed and their behaviour was compared to the natural product, revealing key stereocentres that impact the overall distribution.  more » « less
Award ID(s):
2102649
PAR ID:
10504697
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
33
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on the commensal ASKAP detection of a fast radio burst (FRB), FRB 20211127I, and the detection of neutral hydrogen (Hi) emission in the FRB host galaxy, WALLABY J131913–185018 (hereafter W13–18). This collaboration between the CRAFT and WALLABY survey teams marks the fifth, and most distant, FRB host galaxy detected in Hi, not including the Milky Way. We find that W13–18 has an Himass ofMHI= 6.5 × 109M, an Hi-to-stellar mass ratio of 2.17, and coincides with a continuum radio source of flux density at 1.4 GHz of 1.3 mJy. The Higlobal spectrum of W13–18 appears to be asymmetric, albeit the Hiobservation has a low signal-to-noise ratio (S/N), and the galaxy itself appears modestly undisturbed. These properties are compared to the early literature of Hiemission detected in other FRB hosts to date, where either the Higlobal spectra were strongly asymmetric, or there were clearly disrupted Hiintensity map distributions. W13–18 lacks a sufficient S/N to determine whether it is significantly less asymmetric in its Hidistribution than previous examples of FRB host galaxies. However, there are no strong signs of a major interaction in the optical image of the host galaxy that would stimulate a burst of star formation and hence the production of putative FRB progenitors related to massive stars and their compact remnants. 
    more » « less
  2. Abstract We report new measurements of branching fractions for 20 UV and blue lines in the spectrum of neutral silicon (Sii) originating in the 3s23p4s3Po1,2,1Po1, and 3s3p31Do1,2upper levels. Transitions studied include both strong, nearly pure LS multiplets as well as very weak spin-forbidden transitions connected to these upper levels. We also report a new branching fraction measurement of the4P1/22Po1/2,3/2intercombination lines in the spectrum of singly ionized silicon (Siii). The weak spin-forbidden lines of Siiand Siiiprovide a stringent test on recent theoretical calculations, to which we make comparison. The branching fractions from this study are combined with previously reported radiative lifetimes to yield transition probabilities and log(gf) values for these lines. We apply these new measurements to abundance determinations in five metal-poor stars. 
    more » « less
  3. Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM. 
    more » « less
  4. Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation. 
    more » « less
  5. Context.Grids of stellar evolution models with rotation using the Geneva stellar evolution code (GENEC) have been published for a wide range of metallicities. Aims.We introduce the last remaining grid of GENECmodels, with a metallicity ofZ = 10−5. We study the impact of this extremely metal-poor initial composition on various aspects of stellar evolution, and compare it to the results from previous grids at other metallicities. We provide electronic tables that can be used to interpolate between stellar evolution tracks and for population synthesis. Methods.Using the same physics as in the previous papers of this series, we computed a grid of stellar evolution models with GENECspanning masses between 1.7 and 500M, with and without rotation, at a metallicity ofZ = 10−5. Results.Due to the extremely low metallicity of the models, mass-loss processes are negligible for all except the most massive stars. For most properties (such as evolutionary tracks in the Hertzsprung-Russell diagram, lifetimes, and final fates), the present models fit neatly between those previously computed at surrounding metallicities. However, specific to this metallicity is the very large production of primary nitrogen in moderately rotating stars, which is linked to the interplay between the hydrogen- and helium-burning regions. Conclusions.The stars in the present grid are interesting candidates as sources of nitrogen-enrichment in the early Universe. Indeed, they may have formed very early on from material previously enriched by the massive short-lived Population III stars, and as such constitute a very important piece in the puzzle that is the history of the Universe. 
    more » « less