We report the detection of magnesium dicarbide, MgC2, in the laboratory at centimeter wavelengths and assign24MgC2,25MgC2, and26MgC2to 14 unidentified lines in the radio spectrum of the circumstellar envelope of the evolved carbon star IRC+10216. The structure of MgC2is found to be T-shaped with a highly ionic bond between the metal atom and the C2unit, analogous to other dicarbides containing electropositive elements. A two-temperature excitation model of the MgC2emission lines observed in IRC+10216 yields a very low rotational temperature of 6 ± 1 K, a kinetic temperature of 22 ± 13 K, and a column density of (1.0 ± 0.3) × 1012cm−2. The abundance of MgC2relative to the magnesium–carbon chains MgCCH, MgC4H, and MgC6H is 1:2:22:20 and provides a new constraint on the sequential radiative association–dissociative recombination mechanisms implicated in the production of metal-bearing molecules in circumstellar environments.
Calcium dicarbide, CaC2, has been characterized at high resolution in the laboratory, and its main isotopologue,40CaC2, has been assigned to 14 rotational emission lines between 14 and 115 GHz, including 12 previously unassigned lines, in the expanding molecular envelope of the evolved carbon star IRC+10216. Aided by high-level quantum calculations and measurements of multiple isotopologues, CaC2is determined to be a T-shaped molecule with a highly ionic bond linking the metal atom to the C2unit, very similar in structure to isovalent magnesium dicarbide (MgC2). The excitation of CaC2is characterized by a very low rotational temperature of 5.8 ± 0.6 K and a kinetic temperature of 36 ± 16 K, similar to values derived for MgC2. On the assumption that the emission originates from a 30″ shell in IRC+10216, the column density of CaC2is (5.6 ± 1.7) × 1011cm−2. CaC2is only the second Ca-bearing molecule besides CaNC and only the second metal dicarbide besides MgC2identified in space. Owing to the similarity between the predicted ion–molecule chemistry of Ca and Mg, a comparison of the CaC2abundance with that of MgC2and related species permits empirical inferences about the radiative association–dissociative recombination processes postulated to yield metal-bearing molecules in IRC+10216 and similar objects.
more » « less- Award ID(s):
- 2110489
- NSF-PAR ID:
- 10504716
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 966
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L28
- Size(s):
- Article No. L28
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A new interstellar molecule, FeC (
X 3Δi ), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ = 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearV LSR≈ −26 km s−1and linewidths of ΔV 1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R *(∼6″) extending out to ∼500R *(∼10″) and a fractional abundance, relative to H2, off ∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off ∼ 8 × 10−11in a larger shell situated near 800R *. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection. -
Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (
J + 1 ←J ) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J = 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J = 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R *, and an abundance, relative to H2, off ∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R *. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP. -
Abstract An extended series of rare‐earth metal calcium germanides have been synthesized and structurally characterized. The compounds have the general formula
RE 5−x Cax Ge4(1.5<x <3.6;RE= rare‐earth metal; Ce, Nd, Sm, Tb−Lu) and their structures have been established from single‐crystal X‐ray diffraction methods. They crystallize with the Gd5Si4‐type in the orthorhombic space groupPnma (No. 62;Z= 4; Pearson symboloP 36), where the germanium atoms are interconnected into two kinds of Ge2‐dimers, formally [Ge2]6−. These studies show that Ca can be successfully incorporated into the hostRE 5Ge4structure, whereby trivalent rare‐earth metal atoms can be substituted by divalent calcium atoms. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms and cubes, centered by either Ge or Ca atoms. On one of the metal sites, the substitution is preferential and in 9 out of the 10 refined structures, the Wyckoff site 4c is found almost exclusively occupied by Ca. On the other two metal sites the substitution patterns appear to be governed by the mismatch between the size of theRE 3+and Ca2+ions. This work further demonstrates the ability for the Gd5Si4structure type to accommodate the substitution of a non‐magnetic element while maintaining the global structural integrity. -
Abstract Calcium germanides with two mid‐late rare‐earth metals, Ca5−
x Gdx Ge3and Ca5−x Tbx Ge3(x ≈0.1−0.2), have been synthesized and structurally characterized. Additionally, a lanthanum‐rich germanide with calcium substitutions, La5−x Cax Ge3(x ≈0.5) has also been identified. The three structures have been established from single‐crystal X‐ray diffraction methods and confirmed to crystallize with the Cr5B3‐type in the tetragonal space groupI 4/mcm (no. 140;Z =4; Pearson symboltI 32), where part of the germanium atoms are interconnected into Ge2‐dimers, formally [Ge2]6−. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms, square‐antiprisms and cubes, centered by Ge or rare‐earth/calcium metal atoms. These studies show that the amount of trivalent rare‐earth metal atoms substituting divalent calcium atoms is in direct correlation with the lengths of the Ge−Ge bond within the Ge2‐dimers, with distance varying between 2.58 Å in Ca5−x Gdx Ge3and 2.75 Å in La5−x Cax Ge3. Such an elongation of the Ge−Ge bond is consistent with the notion that the parent Ca5Ge3Zintl phase (e. g. (Ca2+)5[Ge2]6−[Ge4−]) is being driven out of the ideal valence electron count and further reduced. In this context, this work demonstrates the ability of the germanides with the Cr5B3structure type to accommodate substitutions and wider valence electron count while maintaining their global structural integrity.