skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Evaluation of Classroom Instructional Support with LLMs and BoWs: Connecting Global Predictions to Specific Feedback
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning architecture that uses either zero-shot prompting of Meta's Llama2, and/or a classic Bag of Words (BoW) model, to classify individual utterances of teachers' speech (transcribed automatically using OpenAI's Whisper) for the presence of Instructional Support. Then, these utterance-level judgments are aggregated over a 15-min observation session to estimate a global CLASS score. Experiments on two CLASS-coded datasets of toddler and pre-kindergarten classrooms indicate that (1) automatic CLASS Instructional Support estimation accuracy using the proposed method (Pearson R up to 0.48) approaches human inter-rater reliability (up to R=0.55); (2) LLMs generally yield slightly greater accuracy than BoW for this task, though the best models often combined features extracted from both LLM and BoW; and (3) for classifying individual utterances, there is still room for improvement of automated methods compared to human-level judgments. Finally, (4) we illustrate how the model's outputs can be visualized at the utterance level to provide teachers with explainable feedback on which utterances were most positively or negatively correlated with specific CLASS dimensions.  more » « less
Award ID(s):
2046505
PAR ID:
10504840
Author(s) / Creator(s):
;
Publisher / Repository:
International Educational Data Mining Society (IEDMS)
Date Published:
Journal Name:
Journal of Educational Data Mining
ISSN:
2157-2100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Effective feedback is essential for refining instructional practices in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multi-functionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students. 
    more » « less
  2. Ensuring the effectiveness of text-based crisis counseling requires observing ongoing conversations and providing feedback, both labor-intensive tasks. Automatic analysis of conversations—at the full chat and utterance levels—may help support counselors and provide better care. While some session-level training data (e.g., rating of patient risk) is often available from counselors, labeling utterances requires expensive post hoc annotation. But the latter can not only provide insights about conversation dynamics, but can also serve to support quality assurance efforts for counselors. In this paper, we examine if inexpensive—and potentially noisy—session-level annotation can help improve label utterances. To this end, we propose a logic-based indirect supervision approach that exploits declaratively stated structural dependencies between both levels of annotation to improve utterance modeling. We show that adding these rules gives an improvement of 3.5% f-score over a strong multi-task baseline for utterance-level predictions. We demonstrate via ablation studies how indirect supervision via logic rules also improves the consistency and robustness of the system. 
    more » « less
  3. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosue; Paquette, Luc (Ed.)
    in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multifunctionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students. 
    more » « less
  4. Classroom orchestration requires teachers to concurrently manage multiple activities across multiple social levels (individual, group, and class) and under various constraints. Real-time dashboards can support teachers; however, designing actionable dashboards is a huge challenge. This paper describes a participatory design study to identify and inform critical features of a dashboard for displaying relevant, actionable, real-time data. We leveraged a Sense-Assess-Act framework to present dashboard mockups to teachers for feedback. Although the participating teachers differed in how they would use the presented information (during class or after class as a post hoc analysis tool), two common emerging themes were that they wanted to use the data to a) better support their students and b) to make broader instructional decisions. We present data from our study and propose a customizable, mobile dashboard, that can be adapted to a teacher's specific needs at a specific time, to help them better facilitate learning activities. 
    more » « less
  5. Predicting the intelligibility of noisy recordings is difficult and most current algorithms treat all speech energy as equally important to intelligibility. Our previous work on human perception used a listening test paradigm and correlational analysis to show that some energy is more important to intelligibility than other energy. In this paper, we propose a system called the Bubble Cooperative Network (BCN), which aims to predict important areas of individual utterances directly from clean speech. Given such a prediction, noise is added to the utterance in unimportant regions and then presented to a recognizer. The BCN is trained with a loss that encourages it to add as much noise as possible while preserving recognition performance, encouraging it to identify important regions precisely and place the noise everywhere else. Empirical evaluation shows that the BCN can obscure 97.7% of the spectrogram with noise while maintaining recognition accuracy for a simple speech recognizer that compares a noisy test utterance with a clean reference utterance. The masks predicted by a single BCN on several utterances show patterns that are similar to analyses derived from human listening tests that analyze each utterance separately, while exhibiting better generalization and less context-dependence than previous approaches. 
    more » « less