Abstract Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.
more »
« less
Dynamics of giant vesicle assembly from thin lipid films
Motivation Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. Approach We develop the ‘stopped-time’ technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. Findings We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.
more »
« less
- PAR ID:
- 10504845
- Publisher / Repository:
- Journal of Colloid and Interface Science
- Date Published:
- Journal Name:
- Journal of Colloid and Interface Science
- Volume:
- 661
- Issue:
- C
- ISSN:
- 0021-9797
- Page Range / eLocation ID:
- 1033 to 1045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.more » « less
-
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F−, Cl−, Br−) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.more » « less
-
Abstract Atomically thin 2D materials are good templates to grow organic semiconductor thin films with desirable features. However, the 2D materials typically exhibit surface roughness and spatial charge inhomogeneity due to nonuniform doping, which can affect the uniform assembly of organic thin films on the 2D materials. A hybrid template is presented for preparation of highly crystalline small‐molecule organic semiconductor thin film that is fabricated by transferring graphene onto a highly ordered self‐assembled monolayer. This hybrid graphene template has low surface roughness and spatially uniform doping, and it yields highly crystalline fullerene thin films with grain sizes >300 nm, which is the largest reported grain size for C60thin films on 2D materials. A graphene/fullerene/pentacene phototransistor fabricated directly on the hybrid template has five times higher photoresponsivity than a phototransistor fabricated on a conventional graphene template supported by a SiO2wafer.more » « less
-
Using a variety of steady state and time-resolved microscopies, this work directly compares the excited state dynamics of two distinct morphologies of a hierarchical perylene diimide material: a kinetically trapped 1D mesoscale aggregate produced with a redox-assisted self-assembly process, and a thin film produced via conventional solution-processing techniques. Although the constituent monomer is identical for both materials, linear dichroism studies indicate that the kinetically trapped structures possess significantly higher long-range order than the conventional thin film. A comparison of the two systems with broadband pump–probe microscopy reveals distinct differences in their excited state dynamics. In the kinetically trapped structures, polarization-resolved kinetics, as well as a picosecond redshift of the ground state bleach provide evidence for rapid excited state delocalization, which is absent in the thin film. A comparison of transient spectra collected at 1 μs indicates the presence of long-lived charge separated states in redox treated samples, but not in the thin film. These results provide direct evidence that control of the supramolecular assembly process can be leveraged to affect the long-range order of derived PDI materials, thus enabling increased yield and lifetime of charge separated states for light harvesting applications. Furthermore, these results highlight the need for microscale broadband probes of organic materials to accurately capture the influence of local morphology on excited state functionality.more » « less
An official website of the United States government

