skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Explanations for Image Classifiers (Student Abstract)
We hypothesize that deep network classifications of complex scenes can be explained using sets of relevant objects.We employ beam search and singular value decomposition to generate local and global explanations that summarize the deep model's interpretation of a class.  more » « less
Award ID(s):
1941892
PAR ID:
10504941
Author(s) / Creator(s):
;
Publisher / Repository:
AAAI Press
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
16352 to 16353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The current United Nations Decade of Ocean Science for Sustainable Development (2021–2030; hereafter, the Decade) offers a unique opportunity and framework to globally advance ocean science and policy. Achieving meaningful progress within the Decade requires collaboration and coordination across Decade Actions (Programs, Projects, and Centres). This coordination is particularly important for the deep ocean, which remains critically under‐sampled compared to other ecosystems. Despite the limited sampling, the deep ocean accounts for over 95% of Earth's habitable space, plays a crucial role in regulating the carbon cycle and global temperatures, and supports diverse ecosystems. To collectively advance deep‐ocean science, we gathered representatives from 20 Decade Actions that focus at least partially on the deep ocean. We identified five broad themes that aim to advance deep‐ocean science in alignment with the Decade's overarching 10 Challenges: natural capital and the blue economy, biodiversity, deep‐ocean observing, best practices in data sharing, and capacity building. Within each theme, we propose concrete objectives (termed Cohesive Asks) and milestones (Targets) for the deep‐ocean community. Developing these Cohesive Asks and Targets reflects a commitment to better coordination across deep‐ocean Decade Actions. We aim to build bridges across deep‐ocean disciplines, which encompass natural science, ocean observing, policy, and capacity development. 
    more » « less
  2. Abstract BackgroundWhen deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. ResultsOur dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic “handoffs” in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. ConclusionOur study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. 
    more » « less
  3. Abstract The chemical composition of the deep continental crust is key to understanding the formation and evolution of the continental crust. Constraining the chemical composition of present‐day deep continental crust is, however, limited by indirect accessibility. This paper presents a modeling method for constraining deep crustal chemical structures from observed crustal seismic structures. We compiled a set of published composition models for the continental crust to construct functional relationships between seismic wave speed and major oxide content in the crust. Phase equilibria and compressional wave speeds (VP) for each composition model were calculated over a range of depths and temperatures of the deep crust. For conditions within the alpha(α)‐quartz stability field, robust functional relationships were obtained betweenVPand major oxide contents of the crust. Based on these relationships, observedVPof the deep crust can be inverted to chemical compositions for regions with given geotherms. We provide a MATLAB code for this process (CalcCrustComp). We apply this method to constrain compositions from deep crustalVPof global typical tectonic settings and the North China Craton (NCC). Our modeling results suggest that the lower crust in subduction‐related and rifting‐related tectonic settings may be more mafic than platforms/shields and orogens. The lowVPsignature in the deep crust of the NCC can be explained by intermediate crustal compositions, higher water contents, and/or higher temperatures. The chemical structure obtained by this method can serve as a reference model to further identify deep crustal features. 
    more » « less
  4. Abstract We use the transport matrices of a data‐constrained circulation model to efficiently compute the steady state distribution of the deep ocean dissolved organic carbon (DOC) at a 1° horizontal resolution by propagating the surface DOC boundary conditions into the ocean interior. An equivalent simulation in the traditional forward modeling approach would be prohibitively computationally expensive. Our model simulates the total DOC as the sum of two DOC pools, the refractory and the semi‐labile. The model is able to simulate the large‐scale features of the deep ocean DOC without local sources or sinks of DOC in the ocean interior. The deep ocean DOC in the model is sensitive to the preformed DOC concentrations in the formation sites of deep and bottom waters, where observations are lacking. Furthermore, our model experiments indicate that the deep Atlantic DOC gradient is sensitive to the mixing of deep waters with different concentrations of preformed refractory DOC, the transport of semi‐labile DOC from the surface North Atlantic, and the decay rate of semi‐labile DOC. These, combined with the observation that much of the deep ocean DOC gradient is in the Atlantic, suggests that the semi‐labile DOC may be an important component of the deep Atlantic DOC. Finally, we show that DOC export depends substantially on the depth level where it is evaluated. 
    more » « less
  5. Abstract The Totten Glacier in East Antarctica, with an ice volume equivalent to >3.5 m of global sea-level rise, is grounded below sea level and, therefore, vulnerable to ocean forcing. Here, we use bathymetric and oceanographic observations from previously unsampled parts of the Totten continental shelf to reveal on-shelf warm water pathways defined by deep topographic features. Access of warm water to the Totten Ice Shelf (TIS) cavity is facilitated by a deep shelf break, a broad and deep depression on the shelf, a cyclonic circulation that carries warm water to the inner shelf, and deep troughs that provide direct access to the TIS cavity. The temperature of the warmest water reaching the TIS cavity varies by ~0.8 °C on an interannual timescale. Numerical simulations constrained by the updated bathymetry demonstrate that the deep troughs play a critical role in regulating ocean heat transport to the TIS cavity and the subsequent basal melt of the ice shelf. 
    more » « less