Abstract The rapid radiation and dispersal of crown reptiles following the end‐Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo‐Triassic ecology. Here, we describe an Early Triassic specimen of the diapsidPalacrodonfrom the Fremouw Formation of Antarctica. WhilePalacrodonis known throughout the Triassic and exhibits a cosmopolitan geographic range, little is known of its evolutionary relationships. We recoverPalacrodonoutside of crown reptiles (Sauria) but more crownward thanYoungina capensisand other late Permian diapsids. Furthermore,Palacrodonpossesses anatomical features that add clarity to the evolution of the stapes within the reptilian lineage, as well as incipient adaptations for arboreality and herbivory during the earliest phases of the Permo–Triassic recovery.
more »
« less
A new lapillopsid from Antarctica and a reappraisal of the phylogenetic relationships of early diverging stereospondylsCitation for this article: Gee, B. M., Beightol, C. V. & Sidor, C. A. (2023) A new lapillopsid from Antarctica and a reappraisal of the phylogenetic relationships of early diverging stereospondyls. Journal of Vertebrate Paleontology . https://doi.org/10.1080/02724634.2023.2216260
Stereospondyls underwent a global radiation in the Early Triassic, including an abundance of small-bodied taxa, which are otherwise rare throughout the Mesozoic. Lapillopsidae is one such clade and is presently known only from Australia and India. This clade’s phylogenetic position, initially interpreted as micropholid dissorophoids and later as early diverging stereospondyls, remains uncertain. Although the latter interpretation is now widely accepted, lapillopsids’ specific relationship to other Early Triassic clades remains unresolved; in particular, recent work suggested that Lapillopsidae nests within Lydekkerinidae. Here we describe Rhigerpeton isbelli, gen. et sp. nov., based on a partial skull from the lower Fremouw Formation of Antarctica that is diagnosed by a combination of features shared with at least some lapillopsids, such as a longitudinal ridge on the dorsal surface of the tabular, and features not found in lapillopsids but shared with some lydekkerinids, such as the retention of pterygoid denticles and a parachoanal tooth row (as in Lydekkerina, for example). A series of phylogenetic analyses confirm the lapillopsid affinities of R. isbelli but provide conflicting results regarding the polyphyly and/or paraphyly of Lydekkerinidae with respect to lapillopsids. The position of Lapillopsidae within Temnospondyli is highly sensitive to taxon sampling of other predominantly Early Triassic temnospondyls. The occurrence of a lapillopsid in Antarctica brings the documented temnospondyl diversity more in line with historically well-sampled portions of southern Pangea but robust biogeographic comparisons remain hindered by the inability to resolve many historic Antarctic temnospondyl records to the finer taxonomic scales needed for robust biostratigraphy
more »
« less
- Award ID(s):
- 1947094
- PAR ID:
- 10504951
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- Journal of Vertebrate Paleontology
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0272-4634
- Subject(s) / Keyword(s):
- Antarctica Fremouw Formation Temnospondyli
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Therocephalia are an important clade of non-mammalian therapsids that evolved a diverse array of morphotypes and body sizes throughout their evolutionary history. The postcranial anatomy of therocephalians has largely been overlooked, but remains important towards understanding aspects of their palaeobiology and phylogenetic relationships. Here, we provide the first postcranial description of the large akidnognathid eutherocephalianMoschorhinus kitchingiby examining multiple specimens from fossil collections in South Africa. We also compare the postcranial anatomy with previously described therocephalian postcranial material and provide an updated literature review to ensure a reliable foundation of comparison for future descriptive work.Moschorhinusshares all the postcranial features of eutherocephalians that differentiate them from early-diverging therocephalians, but is differentiated from other eutherocephalian taxa by aspects concerning the scapula, interclavicle, sternum, manus, and femur. The novel anatomical data from this contribution shows thatMoschorhinuspossessed a stocky bauplan with a particularly robust scapula, humerus, and femur. These attributes, coupled with the short and robust skull bearing enlarged conical canines imply thatMoschorhinuswas well equipped to grapple with and subdue prey items. Additionally, the combination of these attributes differ from those of similarly sized coeval gorgonopsians, which would have occupied a similar niche in late Permian ecosystems. Moreover,Moschorhinuswas the only large carnivore known to have survived the Permo-Triassic mass extinction. Thus, the subtle but important postcranial differences may suggest a type of niche partitioning in the predator guild during the Permo-Triassic mass extinction interval.more » « less
-
Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlaniusfrom the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30–65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoidesand other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoidesas a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.more » « less
-
The fossil record of temnospondyl amphibians in the immediate wake of the Permo-Triassic mass extinction captures extensive taxic and ecological diversity, with most records known from high paleolatitudinal settings. In southern Pangea, the most substantial records come from South Africa and Australia, with a total of over 20 taxa presently recognized. Temnospondyls have also been known from correlated horizons in the lower Fremouw Formation of Antarctica since the late 1960s, but these records are mostly fragmentary, thereby limiting taxonomic resolution to the family level and subsequent biostratigraphic correlations and comparisons between high-latitude basins. Here we report substantial new material of the amphibamiform Micropholis stowi, a relic dissorophoid previously known only from the Katberg Formation (Lystrosaurus declivis Assemblage Zone) of South Africa, from the lower Fremouw Formation. The exceptional preservation of the recently recovered material permits not only confident taxonomic referral but also tentative association of several individuals to the broad-headed morph of the taxon. The recognition of M. stowi in Antarctica represents only the fourth geographic occurrence of a dissorophoid from southern Pangea and supports the hypothesis that high-latitude environments served as refugia for temnospondyls during the mass extinction. In the case of M. stowi, such refugia permitted the persistence of a predominantly Permo-Carboniferous clade, and the Antarctic records discussed here further hint at a poorly sampled cryptic distribution, both of amphibamiforms in southern Pangea and of small-bodied temnospondyls in early Mesozoic deposits.more » « less
-
Abstract Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.more » « less
An official website of the United States government

