skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surficial soil changes and precipitation patterns interact to govern propagation of deep soil solutes produced by weathering.
Climate models project changing patterns of precipitation and increases in temperature that modify soil moisture dynamics. Land use and changing frequency and intensity of precipitation can induce changes in soil structure and rooting abundances at timescales shorter than commonly considered. Soil structure is a critical ecosystem that governs water flow through soil profiles and across landscapes, and can influence weathering rates and thus solute release and soil development. We hypothesize that the altered soil structure and modification of rooting depth distributions linked to land use change can influence soil solute concentrations, and that those shifts in solute release are dependent on patterns of precipitation. We installed suction lysimeters to collect soil water for ~3 y in two grassland regions with distinct mean annual precipitation (800 mm y-1, 1100 mm y-1) in native prairie, agriculture, and post-agriculture land uses at depths of 10, 40, and 120 cm. We linked solute concentrations to soil moisture, aggregate-size distribution, pore geometry, and rooting depth distributions to assess how land use change and the altered rooting abundance it imposes can modify soil structure and hydrologic fluxes, and to infer how soil weathering can shift deep in the subsurface. We reveal how soil moisture residence time and the soil pore network can govern solute production, and the importance of precipitation and thus of soil moisture accumulation over growing seasons for mineral weathering and solute production. Specifically, we find that the solubility potential of multiple weathering products and organic carbon increases with precipitation, dominance of relatively small aggregates at the surface, and fewer coarse roots. Enhanced solute concentrations at depth may also reflect transport down-profile. Our findings reveal unintended consequences of land use change that influence important hydrologic dynamics and nutrient cycling in the vadose zone and how deeply and how persistently unexpected consequences of changes in land cover can propagate.  more » « less
Award ID(s):
2121639
PAR ID:
10505018
Author(s) / Creator(s):
Publisher / Repository:
AGU 2023 abstracts
Date Published:
Journal Name:
AGU abstract
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep soils represent a dynamic interface between surface soils and saprolite or bedrock, influencing water flow, solute and gas exchange, and mineral and organic matter transformations from local to global scales. Root architecture reflects land cover and soil heterogeneity, enabling vegetation access to resources that vary temporally and spatially while shaping soil structure and formation. However, how land use can influence roots and soil structure relatively deep in the subsurface (>30 cm) remains poorly understood. We investigate how cropland‐related land use and subsequent vegetation recovery alter rooting dynamics and soil structure in deeper horizons. Using a large‐scale data set representing multiple land uses as a means of varying root abundance across four soil orders, we demonstrate that B horizon root loss and regeneration are linked to changes in multiple soil structural attributes deep within soil profiles. Our findings further suggest that the degree of soil development modulates the extent of structural transformations, with less‐developed soils showing greater susceptibility to root‐associated structural shifts. The greatest change in structural development and distinctness was observed in Inceptisols, while Ultisols exhibited the least change. Such soil structural changes affect water flowpaths, carbon retention, and nutrient transport throughout the subsurface. This work thus underscores the need for Earth system models to capture dynamic soil structural attributes that respond to land‐use change. We suggest that changes in deep‐rooting abundance, such as those accelerating in the Anthropocene, may be an important agent of subsurface structural change with meaningful implications for contemporary and future ecosystem feedbacks to climate. 
    more » « less
  2. Abstract Threshold changes in rainfall‐runoff generation commonly represent shifts in runoff mechanisms and hydrologic connectivity controlling water and solute transport and transformation. In watersheds with limited human influence, threshold runoff responses reflect interaction between precipitation event and antecedent soil moisture. Similar analyses are lacking in intensively managed landscapes where installation of subsurface drainage tiles has altered connectivity between the land surface, groundwater, and streams, and where application of fertilizer has created significant stores of subsurface nitrogen. In this study, we identify threshold patterns of tile‐runoff generation for a drained agricultural field in Illinois and evaluate how antecedent conditions—including shallow soil moisture, groundwater table depth, and the presence or absence of crops—control tile response. We relate tile‐runoff thresholds to patterns of event nitrate load observed across multiple storm events and evaluate how antecedent conditions control within‐event nitrate concentration‐discharge relationships. Our results demonstrate that an event tile‐runoff threshold emerges relative to the sum of gross precipitation and indices of antecedent shallow soil moisture and antecedent below‐tile groundwater moisture deficit, indicating that both shallow soil and below‐tile storages must be filled to generate significant runoff. In turn, event nitrate load shows a linear dependence on runoff for most time periods, suggesting that subsurface nitrate export and storage can be estimated using runoff threshold relationships and long‐term average nitrate concentrations. Finally, within‐event nitrate concentration‐discharge relationships are controlled by event size and the antecedent tile flow state because these factors dictate the sequence of flow path activation and tile connectivity over a storm event. 
    more » « less
  3. Abstract Chemical weathering in mountain critical zones controls river chemistry and regulates long‐term climate. Mountain landscapes contain diverse landforms created by geomorphic processes, including landslides, glacial moraines, and rock glaciers. These landforms generate unique flowpaths and water‐rock interactions that modify water chemistry as precipitation is transformed to streamflow. Variations in lithology and vegetation also strongly control water chemistry. Prior work has shown that landslides generate increased dissolved solute concentrations in rapidly uplifting mountains. However, there is still uncertainty regarding the magnitude which different geomorphic processes and land cover variations influence solute chemistry across tectonic and climatic regimes. We measured ion concentrations in surface water from areas that drain a variety of landforms and across land cover gradients in the East River watershed, a tributary of the Colorado River. Our results show that landslides produce higher solute concentrations than background values measured in streams draining soil‐mantled hillslopes and that elevated concentrations persist centuries to millennia after landslide occurrence. Channels with active bedrock incision also generate high solute concentrations, whereas solute concentrations in waters draining moraines and rock glaciers are comparable to background values. Solute fluxes from landslides and areas of bedrock incision are 1.6–1.8 times greater than nearby soil‐mantled hillslopes. Carbonic acid weathering dominates surface water samples from watersheds with greater vegetation coverage. Geomorphically enhanced weathering generates hotspots for net CO2release or sequestration, depending on lithology, that are 1.5–3.5 times greater than background values, which has implications for understanding links among surface processes, chemical weathering, and carbon cycle dynamics in alpine watersheds. 
    more » « less
  4. null (Ed.)
    Abstract. Carbonate weathering is essential in regulating atmosphericCO2 and carbon cycle at the century timescale. Plant roots accelerateweathering by elevating soil CO2 via respiration. It however remainspoorly understood how and how much rooting characteristics (e.g., depth anddensity distribution) modify flow paths and weathering. We address thisknowledge gap using field data from and reactive transport numericalexperiments at the Konza Prairie Biological Station (Konza), Kansas (USA), asite where woody encroachment into grasslands is surmised to deepen roots. Results indicate that deepening roots can enhance weathering in two ways.First, deepening roots can control thermodynamic limits of carbonatedissolution by regulating how much CO2 transports vertical downward tothe deeper carbonate-rich zone. The base-case data and model from Konzareveal that concentrations of Ca and dissolved inorganic carbon (DIC) areregulated by soil pCO2 driven by the seasonal soil respiration. Thisrelationship can be encapsulated in equations derived in this workdescribing the dependence of Ca and DIC on temperature and soil CO2. The relationship can explain spring water Ca and DIC concentrations from multiple carbonate-dominated catchments. Second, numericalexperiments show that roots control weathering rates by regulating recharge(or vertical water fluxes) into the deeper carbonate zone and exportreaction products at dissolution equilibrium. The numerical experimentsexplored the potential effects of partitioning 40 % of infiltrated waterto depth in woodlands compared to 5 % in grasslands. Soil CO2 datasuggest relatively similar soil CO2distribution over depth, which in woodlands and grasslands leads only to 1 % to∼ 12 % difference inweathering rates if flow partitioning was kept the same between the two landcovers. In contrast, deepening roots can enhance weathering by ∼ 17 % to200 % as infiltration rates increased from 3.7 × 10−2 to 3.7 m/a. Weathering rates in these cases however are more than an order of magnitude higher than a case without roots atall, underscoring the essential role of roots in general. Numericalexperiments also indicate that weathering fronts in woodlands propagated> 2 times deeper compared to grasslands after 300 years at aninfiltration rate of 0.37 m/a. These differences in weathering fronts areultimately caused by the differences in the contact times of CO2-charged water with carbonate in the deep subsurface. Within the limitation of modeling exercises, these data and numerical experiments prompt the hypothesis that (1) deepening roots in woodlands can enhance carbonate weathering by promotingrecharge and CO2–carbonate contact in the deepsubsurface and (2) the hydrological impacts of rooting characteristics canbe more influential than those of soil CO2 distribution in modulatingweathering rates. We call for colocated characterizations of roots,subsurface structure, and soil CO2 levels, as well as their linkage to waterand water chemistry. These measurements will be essential to illuminatefeedback mechanisms of land cover changes, chemical weathering, globalcarbon cycle, and climate. 
    more » « less
  5. Abstract Projections of future conditions within the critical zone—earthcasts—can be used to understand the potential effects of changes in climate on processes affecting landscapes. We are developing an approach to earthcast how weathering will change in the future using scenarios of climate change. As a first step here, we use the earthcasting approach to model aspect‐related effects on soil water chemistry and weathering on hillsides in a well‐studied east‐west trending watershed (Shale Hills, Pennsylvania, USA). We completed model simulations of solute chemistry in soil water with and without the effect of aspect for comparison to catchment observations. With aspect included, aqueous weathering fluxes were higher on the sunny side of the catchment. But the effect of aspect on temperature (0.8 °C warmer soil on sunny side) and recharge (100 mm/year larger on shaded side) alone did not explain the magnitude of the observed higher weathering fluxes on the sunny side. Modeled aspect‐related differences in weathering fluxes only approach field observations when we incorporated the measured differences in clay content observed in augered soils on the two hillslopes. We also had to include a biolifting module to accurately describe cation concentrations in soil water versus depth. Biolifting lowered some mineral dissolution rates while accelerating kaolinite precipitation. These short‐duration simulations also highlighted that the inherited differences in particle size on the two sides of the catchment might in themselves be explained by weathering under different microclimates caused by aspect—over longer durations than simulated with our models. 
    more » « less