skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Throughout Earth’s mountainous terrain, forest productivity responses to aspect in the Anthropocene are migrating.
Aspect influences critical zone (CZ) function, particularly in mountainous terrain where it is an ecosystem-defining geographical feature. Distinct insolation across aspects is linked to differences in water availability and flows, land cover and vegetation productivity, soil thickness and rooting depths, frost cracking, weathering rates, and solute concentrations. Relatively few studies have explored any changing influence of aspect on vegetation productivity, which governs soil water storage and runoff. We probe the hypothesis that the productivity benefit of growing on aspects with greater radiation inputs in mountain systems has been declining over the past few decades as warming has accelerated. We quantify how forest productivity varies with aspect from 1985 to 2021 across the world’s mountain ranges using a monthly-averaged, satellite-derived measure of greenness (NDVI). Globally, most montane forests exhibited increasing greenness over time. Mountainous forests ~15° to ~40° latitude N or S of the equator exhibited behavior consistent with our hypothesis by increasingly favoring shadier aspects, particularly during growing seasons when rainfall and soil moisture can be limiting to productivity. In contrast, closer to the poles where climates are coolest and aspect has an even greater influence on annual solar radiation, the benefit of a sun-facing aspect appears to be increasing across all seasons, consistent with poleward forest community migration hypotheses. We also demonstrate greater increases over time in montane forest greenness on east-facing slopes compared to west-facing slopes; north of ~40° latitude this pattern appears less robust. These observations reveal that it is increasingly disadvantageous for montane forests growing on sunnier, hotter aspects at relatively low latitudes during the hottest times of the year. Given known linkages between ecosystem productivity and CZ functions like water storage, provision, and flows, soil development, solute production, and regolith thickness, these analyses cast light on yet-underappreciated consequences of a rapidly warming climate on Earth’s montane forests and their capacity to shape CZ processes.  more » « less
Award ID(s):
2121639
PAR ID:
10505020
Author(s) / Creator(s):
Publisher / Repository:
AGU abstract
Date Published:
Journal Name:
AGU abstract
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The structure of the critical zone (CZ) is a product of feedbacks among hydrologic, climatic, biotic, and chemical processes. Past research within snow‐dominated systems has shown that aspect‐dependent solar radiation inputs can produce striking differences in vegetation composition, topography, and soil depth between opposing hillslopes. However, far fewer studies have evaluated the role of microclimates on CZ development within rain‐dominated systems, especially below the soil and into weathered bedrock. To address this need, we characterized the CZ of a north‐facing and south‐facing slope within a first‐order headwater catchment located in central coast California. We combined terrain analysis of vegetation distribution and topography with soil pit characterization, geophysical surveys and hydrologic measurements between slope‐aspects. We documented denser vegetation and higher shallow soil moisture on north facing slopes, which matched previously documented observations in snow‐dominated sites. However, average topographic gradients were 24° and saprolite thickness was approximately 6 m across both hillslopes, which did not match common observations from the literature that showed widespread asymmetry in snow‐dominated systems. These results suggest that dominant processes for CZ evolution are not necessarily transferable across regions. Thus, there is a continued need to expand CZ research, especially in rain‐dominated and water‐limited systems. Here, we present two non‐exclusive mechanistic hypotheses that may explain these unexpected similarities in slope and saprolite thickness between hillslopes with opposing aspects. 
    more » « less
  2. Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure. 
    more » « less
  3. Abstract Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions. 
    more » « less
  4. Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates. 
    more » « less
  5. null (Ed.)
    Abstract Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe ecosystems—with drier climates and lower biomass—showed greater drought sensitivity than conifer forests. However, variability in drought sensitivity was considerable within biomes and within ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms and areas with low soil bulk density and high soil available water capacity showed reduced drought sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity patterns discerned from remote sensing can complement plot-scale studies of plant physiological responses to drought to help inform climate-adaptation planning as drought conditions intensify. 
    more » « less