Abstract The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein–protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets. 
                        more » 
                        « less   
                    
                            
                            A novel approach for predicting upstream regulators (PURE) that affect gene expression
                        
                    
    
            Abstract External factors such as exposure to a chemical, drug, or toxicant (CDT), or conversely, the lack of certain chemicals can cause many diseases. The ability to identify such causal CDTs based on changes in the gene expression profile is extremely important in many studies. Furthermore, the ability to correctly infer CDTs that can revert the gene expression changes induced by a given disease phenotype is a crucial step in drug repurposing. We present an approach for Predicting Upstream REgulators (PURE) designed to tackle this challenge. PURE can correctly infer a CDT from the measured expression changes in a given phenotype, as well as correctly identify drugs that could revert disease-induced gene expression changes. We compared the proposed approach with four classical approaches as well as with the causal analysis used in Ingenuity Pathway Analysis (IPA) on 16 data sets (1 rat, 5 mouse, and 10 human data sets), involving 8 chemicals or drugs. We assessed the results based on the ability to correctly identify the CDT as indicated by its rank. We also considered the number of false positives, i.e. CDTs other than the correct CDT that were reported to be significant by each method. The proposed approach performed best in 11 out of the 16 experiments, reporting the correct CDT at the very top 7 times. IPA was the second best, reporting the correct CDT at the top 5 times, but was unable to identify the correct CDT at all in 5 out of the 16 experiments. The validation results showed that our approach, PURE, outperformed some of the most popular methods in the field. PURE could effectively infer the true CDTs responsible for the observed gene expression changes and could also be useful in drug repurposing applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203236
- PAR ID:
- 10505205
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments.more » « less
- 
            Abstract Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful. We propose scDEAL, a deep transfer learning framework for cancer drug response prediction at the single-cell level by integrating large-scale bulk cell-line data. The highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with scRNA-seq data and transferring the model trained on bulk RNA-seq data to predict drug responses in scRNA-seq. Another feature of scDEAL is the integrated gradient feature interpretation to infer the signature genes of drug resistance mechanisms. We benchmark scDEAL on six scRNA-seq datasets and demonstrate its model interpretability via three case studies focusing on drug response label prediction, gene signature identification, and pseudotime analysis. We believe that scDEAL could help study cell reprogramming, drug selection, and repurposing for improving therapeutic efficacy.more » « less
- 
            null (Ed.)Abstract Background Human mesenchymal stem cells (hMSCs) are intensely researched for applications in cell therapeutics due to their unique properties, however, intrinsic therapeutic properties of hMSCs could be enhanced by genetic modification. Viral transduction is efficient, but suffers from safety issues. Conversely, nonviral gene delivery, while safer compared to viral, suffers from inefficiency and cytotoxicity, especially in hMSCs. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological ‘priming’ of hMSCs with the glucocorticoid dexamethasone can significantly increase transfection in hMSCs by modulating transfection-induced cytotoxicity. This work seeks to establish a library of transfection priming compounds for hMSCs by screening 707 FDA-approved drugs, belonging to diverse drug classes, from the NIH Clinical Collection at four concentrations for their ability to modulate nonviral gene delivery to adipose-derived hMSCs from two human donors. Results Microscope images of cells transfected with a fluorescent transgene were analyzed in order to identify compounds that significantly affected hMSC transfection without significant toxicity. Compound classes that increased transfection across both donors included glucocorticoids, antibiotics, and antihypertensives. Notably, clobetasol propionate, a glucocorticoid, increased transgene production 18-fold over unprimed transfection. Furthermore, compound classes that decreased transfection across both donors included flavonoids, antibiotics, and antihypertensives, with the flavonoid epigallocatechin gallate decreasing transgene production − 41-fold compared to unprimed transfection. Conclusions Our screen of the NCC is the first high-throughput and drug-repurposing approach to identify nonviral gene delivery priming compounds in two donors of hMSCs. Priming compounds and classes identified in this screen suggest that modulation of proliferation, mitochondrial function, and apoptosis is vital for enhancing nonviral gene delivery to hMSCs.more » « less
- 
            null (Ed.)Abstract The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    