A bstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s -wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.
more »
« less
Interactions of πK, ππK and KKπ systems at maximal isospin from lattice QCD
A<sc>bstract</sc> We study the interactions of systems of two and three nondegenerate mesons composed of pions and kaons at maximal isospin using lattice QCD, specificallyπ+K+,π+π+K+andK+K+π+. Utilizing the stochastic LapH method, we determine the spectrum of these systems on two CLSNf= 2 + 1 ensembles with pion masses of 200 MeV and 340 MeV, and include many levels in different momentum frames. We constrain the K matrices describing two- and three-particle interactions by fitting the spectrum to the results predicted by the finite-volume formalism, including up topwaves. This requires also results for theπ+π+andK+K+spectrum, which have been obtained previously on the same configurations. We explore different fitting strategies, comparing fits to energy shifts with fits to energies boosted to the rest frame, and also comparing simultaneous global fits to all relevant two- and three-particle channels to those where we first fit two-particle channels and then add in the three-particle information. We provide the first determination of the three-particle K matrix inπ+π+K+andK+K+π+systems, finding statistically significant nonzero results in most cases. We includesandpwaves in the K matrix forπ+K+scattering, finding evidence for an attractivep-wave scattering length. We compare our results to Chiral Perturbation Theory, including an investigation of the impact of discretization errors, for which we provide the leading order predictions obtained using Wilson Chiral Perturbation Theory.
more »
« less
- Award ID(s):
- 2209167
- PAR ID:
- 10505228
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 5
- ISSN:
- 1029-8479
- Subject(s) / Keyword(s):
- Lattice QCD Scattering Amplitudes Mesons
- Format(s):
- Medium: X Size: 65 pages Other: pdf
- Size(s):
- 65 pages
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We use lattice QCD calculations of the finite-volume spectra of systems of two and three mesons to determine, for the first time, three-particle scattering amplitudes with physical quark masses. Our results are for combinations of π+ and K+, at a lattice spacing a=0.063 fm, and in the isospin-symmetric limit. We also obtain accurate results for maximal-isospin two-meson amplitudes, with those for and being the first determinations at the physical point. Dense lattice spectra are obtained using the stochastic Laplacian-Heaviside method, and the analysis leading to scattering amplitudes is done using the relativistic finite-volume formalism. Results are compared to chiral perturbation theory and to phenomenological fits to experimental data, finding good agreement.more » « less
-
We study systems of two and three mesons composed of pions and kaons at maximal isospin using four CLS ensembles with , including one with approximately physical quark masses. Using the stochastic Laplacian-Heaviside method, we determine the energy spectrum of these systems including many levels in different momentum frames and irreducible representations. Using the relativistic two- and three-body finite-volume formalism, we constrain the two- and three-meson K matrices, including not only the leading wave, but also and waves. By solving the three-body integral equations, we determine, for the first time, the physical-point scattering amplitudes for , , , and systems. These are determined for total angular momentum , , and . We also obtain accurate results for , , and phase shifts. We compare our results to chiral perturbation theory and to phenomenological fits.more » « less
-
Abstract The interaction of $$\textrm{K}^{-}$$ K - with protons is characterised by the presence of several coupled channels, systems like $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ with a similar mass and the same quantum numbers as the $$\textrm{K}^{-}$$ K - p state. The strengths of these couplings to the $$\textrm{K}^{-}$$ K - p system are of crucial importance for the understanding of the nature of the $$\Lambda (1405)$$ Λ ( 1405 ) resonance and of the attractive $$\textrm{K}^{-}$$ K - p strong interaction. In this article, we present measurements of the $$\textrm{K}^{-}$$ K - p correlation functions in relative momentum space obtained in pp collisions at $$\sqrt{s}~=~13$$ s = 13 Te, in p–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02 Te, and (semi)peripheral Pb–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02 Te. The emitting source size, composed of a core radius anchored to the $$\textrm{K}^{+}$$ K + p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ inelastic channels on the measured $$\textrm{K}^{-}$$ K - p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $$\omega $$ ω , necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $$\textrm{K}^{-}$$ K - p interaction indicates that, while the $$\uppi \Sigma $$ π Σ – $$\textrm{K}^{-}$$ K - p dynamics is well reproduced by the model, the coupling to the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n channel in the model is currently underestimated.more » « less
-
A<sc>bstract</sc> A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson$$ {\textrm{K}}_{\textrm{S}}^0 $$ and the double-strange baryon Ξ±is measured, in each event, in the azimuthal direction of the highest-pTparticle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at$$ \sqrt{s} $$ = 5.02 TeV and$$ \sqrt{s} $$ = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/$$ {\textrm{K}}_{\textrm{S}}^0 $$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ±with respect to$$ {\textrm{K}}_{\textrm{S}}^0 $$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±.more » « less
An official website of the United States government

