skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactions of πK, ππK and KKπ systems at maximal isospin from lattice QCD
A<sc>bstract</sc> We study the interactions of systems of two and three nondegenerate mesons composed of pions and kaons at maximal isospin using lattice QCD, specificallyπ+K++π+K+andK+K+π+. Utilizing the stochastic LapH method, we determine the spectrum of these systems on two CLSNf= 2 + 1 ensembles with pion masses of 200 MeV and 340 MeV, and include many levels in different momentum frames. We constrain the K matrices describing two- and three-particle interactions by fitting the spectrum to the results predicted by the finite-volume formalism, including up topwaves. This requires also results for theπ+π+andK+K+spectrum, which have been obtained previously on the same configurations. We explore different fitting strategies, comparing fits to energy shifts with fits to energies boosted to the rest frame, and also comparing simultaneous global fits to all relevant two- and three-particle channels to those where we first fit two-particle channels and then add in the three-particle information. We provide the first determination of the three-particle K matrix inπ+π+K+andK+K+π+systems, finding statistically significant nonzero results in most cases. We includesandpwaves in the K matrix forπ+K+scattering, finding evidence for an attractivep-wave scattering length. We compare our results to Chiral Perturbation Theory, including an investigation of the impact of discretization errors, for which we provide the leading order predictions obtained using Wilson Chiral Perturbation Theory.  more » « less
Award ID(s):
2209167
PAR ID:
10505228
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
5
ISSN:
1029-8479
Subject(s) / Keyword(s):
Lattice QCD Scattering Amplitudes Mesons
Format(s):
Medium: X Size: 65 pages Other: pdf
Size(s):
65 pages
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s -wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory. 
    more » « less
  2. Abstract The interaction of $$\textrm{K}^{-}$$ K - with protons is characterised by the presence of several coupled channels, systems like $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ with a similar mass and the same quantum numbers as the $$\textrm{K}^{-}$$ K - p state. The strengths of these couplings to the $$\textrm{K}^{-}$$ K - p system are of crucial importance for the understanding of the nature of the $$\Lambda (1405)$$ Λ ( 1405 ) resonance and of the attractive $$\textrm{K}^{-}$$ K - p strong interaction. In this article, we present measurements of the $$\textrm{K}^{-}$$ K - p correlation functions in relative momentum space obtained in pp collisions at $$\sqrt{s}~=~13$$ s = 13  Te, in p–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  Te, and (semi)peripheral Pb–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  Te. The emitting source size, composed of a core radius anchored to the $$\textrm{K}^{+}$$ K + p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ inelastic channels on the measured $$\textrm{K}^{-}$$ K - p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $$\omega $$ ω , necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $$\textrm{K}^{-}$$ K - p interaction indicates that, while the $$\uppi \Sigma $$ π Σ – $$\textrm{K}^{-}$$ K - p dynamics is well reproduced by the model, the coupling to the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n channel in the model is currently underestimated. 
    more » « less
  3. A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>. 
    more » « less
  4. A<sc>bstract</sc> We analyze correlation functions of SU(k) × SU(2)Fflavor currents in a family of three-dimensional$$ \mathcal{N} $$ N = 4 superconformal field theories, combining analytic bootstrap methods with input from supersymmetric localization. Via holographic duality, we extract gluon and graviton scattering amplitudes of M-theory on AdS4×S7/ℤkwhich contains a ℂ2/ℤkorbifold singularity. From these results, we derive aspects of the effective description of M-theory on the orbifold singularity beyond its leading low energy limit. We also determine a threshold correction to the holographic correlator from the combined contribution of two-loop gluon and tree-level bulk graviton exchange. 
    more » « less
  5. A<sc>bstract</sc> We review the effective field theory (EFT) bootstrap by formulating it as an infinite-dimensional semidefinite program (SDP), built from the crossing symmetric sum rules and the S-matrix primal ansatz. We apply the program to study the large-Nchiral perturbation theory (χPT) and observe excellent convergence of EFT bounds between the dual (rule-out) and primal (rule-in) methods. This convergence aligns with the predictions of duality theory in SDP, enabling us to analyze the bound states and resonances in the ultra-violet (UV) spectrum. Furthermore, we incorporate the upper bound of unitarity to uniformly constrain the EFT space from the UV scaleMusing the primal method, thereby confirming the consistency of the large-Nexpansion. In the end, we translate the large-N χPT bounds to constrain the higher derivative corrections of holographic QCD models. 
    more » « less