Why the Challenger Deep, the deepest point on Earth’s solid surface, is so deep is unclear, but part of the reason must be the age and density of the downgoing plate. Northwest Pacific oceanic crust subducting in the Izu-Bonin-Mariana Trench is Cretaceous and Jurassic, but the age and nature of Pacific oceanic crust subducting in the southernmost Mariana Trench remains unknown. Here we present the first study of seafloor basalts recovered by the full-ocean-depth crewed submersible Fendouzhe from the deepest seafloor around the Challenger Deep, from both the overriding and downgoing plates. 40Ar/39Ar ages indicate that downgo¬ing basalts are Early Cretaceous (ca. 125 Ma), indicating they are part of the Pacific plate rather than the nearby Oligocene Caroline microplate. Downgoing-plate basalts are slightly enriched in incompatible elements but have similar trace element and Hf isotope compositions to other northwest Pacific mid-ocean ridge basalts (MORBs). They also have slightly enriched Sr-Nd-Pb isotope compositions like those of the Indian mantle domain. These features may have formed with contributions from plume-derived components via plume-ridge interac¬tions. One sample from the overriding plate gives an 40Ar/39Ar age of ca. 55 Ma, about the same age as subduction initiation, to form the Izu-Bonin-Mariana convergent margin. Our results suggest that 50%–90% of the Pb budget of Mariana arc magmas is derived from the subducted MORBs with Indian-type isotope affinity.
more »
« less
Linking Pacific Plate Motions to Metamorphism and Magmatism in Japan During Cretaceous to Paleogene Times
Plate reconstructions of oceanic domains are generally based on paleo-magnetic and seafloor spreading records. However, uncertainties associated with such reconstructions grow rapidly with increasing geological age because the original oceanic plates have been subducted. Here we synthesize advances in seismic tomographic mapping of subducted plates now lying within the mantle that assist plate reconstructions. Our proposed Japan–NW Pacific subduction histories incorporate tomography results and show three distinct stages comparable to those revealed by geochronology, petrology, and geochemistry. We propose major revisions to previously accepted ideas about the age, kinematics, and identity of the plates outboard of Japan during the Cretaceous–Paleogene Sanbagawa-Ryoke paired metamorphism. These revisions require updates to relevant plate convergence boundary conditions and thermo-dynamic models.
more »
« less
- PAR ID:
- 10505243
- Publisher / Repository:
- Elements Magazine
- Date Published:
- Journal Name:
- Elements
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 1811-5209
- Page Range / eLocation ID:
- 103 to 109
- Subject(s) / Keyword(s):
- subduction Pacific Izanagi magmatism tomography mantle
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plate-tectonic reconstructions use Euler poles about which plates rotate in small circle patterns. These small circle patterns are outlined by oceanic transform faults and contiguous fracture zones. Because oceanic lithosphere older than ~200 Ma is preferentially destroyed by subduction, pre-Mesozoic plate-tectonic reconstructions lack such constraints from oceanic fracture zones. Based on high-resolution bathymetry, geological and geophysical data, some fracture zones are shown to be contiguous with pre-existing discontinuities in adjacent continents. Combined with results from published analog and numerical models, continental rift zones and oceanic spreading ridges that are initially oblique to these discontinuities are demonstrated to evolve into orientations perpendicular to them, while fracture zones and transform faults develop parallel to them. Consequently, oceanic spreading directions, or plate movement directions, are controlled by pre-existing continental lithospheric discontinuities. This hypothesis constitutes a paradigm shift, from the widespread belief that transform fault and fracture zone orientations are controlled by plate motions, to one where they are inherited from pre-existing continental discontinuities, and control plate movement directions. If so, identifying such discontinuities in ancient continental lithosphere may constrain plate motions in deep geologic time.more » « less
-
Plate-tectonic reconstructions use rotational (Euler) poles about which plates rotate in small circle patterns, producing oceanic fracture zones. Oceanic fracture zones are contiguous with transform faults. Because oceanic lithosphere older than ~200 Ma is preferentially destroyed by subduction, pre-Mesozoic plate-tectonic reconstructions lack such constraints from oceanic fracture zones. Based on high-resolution bathymetry, geological and geophysical data, with particular emphasis on the Red Sea-Gulf of Aden system, some fracture zones are shown to be contiguous with pre-existing discontinuities in adjacent continents, while others develop parallel to those. Combined with results from existing analog and numerical models, continental rift zones and oceanic spreading ridges that are initially oblique to these discontinuities are demonstrated to evolve into orientations perpendicular to them, while fracture zones and transform faults develop parallel to them. Consequently, oceanic spreading directions, or the exact plate movement directions, are controlled by pre-existing continental lithospheric discontinuities, while other factors such as slab pull control the general direction. This hypothesis constitutes a paradigm shift, from the widespread belief that transform fault and fracture zone orientations are controlled by plate motions, to one where some are inherited from pre-existing continental discontinuities and control the exact directions of plate movements. If so, identifying such discontinuities in ancient continental lithosphere may constrain plate motions in deep geologic time.more » « less
-
The Hawaiian-Emperor seamount chain that includes the Hawaiian volcanoes was created by the Hawaiian mantle plume. Although the mantle plume hypothesis predicts an oceanic plateau produced by massive decompression melting during the initiation stage of the Hawaiian hot spot, the fate of this plateau is unclear. We discovered a megameter-scale portion of thickened oceanic crust in the uppermost lower mantle west of the Sea of Okhotsk by stacking seismic waveforms ofSSprecursors. We propose that this thick crust represents a major part of the oceanic plateau that was created by the Hawaiian plume head ~100 million years ago and subducted 20 million to 30 million years ago. Our discovery provides temporal and spatial clues of the early history of the Hawaiian plume for future plate reconstructions.more » « less
-
null (Ed.)The configuration of mid-ocean ridges subducted below North America prior to Oligocene time is unconstrained by seafloor isochrons and has been primarily inferred from upper-plate geology, including near-trench magmatism. However, many tectonic models are permitted from these constraints. We present a fully kinematic, plate tectonic reconstruction of the NW Cordillera since 60 Ma built by structurally unfolding subducted slabs, imaged by mantle tomography, back to Earth’s surface. We map in three-dimensions the attached Alaska and Cascadia slabs, and a detached slab below western Yukon (Canada) at 400−600 km depth that we call the “Yukon Slab.” Our restoration of these lower plates within a global plate model indicates the Alaska slab accounts for Pacific-Kula subduction since ca. 60 Ma below the Aleutian Islands whereas the Cascadia slab accounts for Farallon subduction since at least ca. 75 Ma below southern California, USA. However, intermediate areas show two reconstruction gaps that persist until 40 Ma. We show that these reconstruction gaps correlate spatiotemporally to published NW Cordillera near-trench magmatism, even considering possible terrane translation. We attribute these gaps to thermal erosion related to ridge subduction and model mid-ocean ridges within these reconstruction gap mid-points. Our reconstructions show two coeval ridge-trench intersections that bound an additional “Resurrection”-like plate along the NW Cordillera prior to 40 Ma. In this model, the Yukon slab represents a thermally eroded remnant of the Resurrection plate. Our reconstructions support a “northern option” Farallon ridge geometry and allow up to ∼1200 km Chugach terrane translation since Paleocene time, providing a new “tomographic piercing point” for the Baja-British Columbia debate.more » « less
An official website of the United States government

