skip to main content

This content will become publicly available on September 1, 2024

Title: Beat the heat: thermal respites and access to food associated with increased bumble bee heat tolerance
Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat – bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  2. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  3. Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees’ acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.

    more » « less
  4. Global declines in abundance and diversity of insects are now well-documented and increasingly concerning given the critical and diverse roles insects play in all ecosystems. Habitat loss, invasive species, and anthropogenic chemicals are all clearly detrimental to insect populations, but mounting evidence implicates climate change as a key driver of insect declines globally. Warming temperatures combined with increased variability may expose organisms to extreme heat that exceeds tolerance, potentially driving local extirpations. In this context, heat tolerance limits (e.g., critical thermal maximum, CTmax) have been measured for many invertebrates and are often closely linked to climate regions where animals are found. However, temperatures well below CTmaxmay also have pronounced effects on insects, but have been relatively less studied. Additionally, many insects with out-sized ecological and economic footprints are colonial (e.g., ants, social bees, termites) such that effects of heat on individuals may propagate through or be compensated by the colony. For colonial organisms, measuring direct effects on individuals may therefore reveal little about population-level impacts of changing climates. Here, we use bumble bees (genusBombus) as a case study to highlight how a limited understanding of heat effects below CTmaxand of colonial impacts and responses both likely hinder our ability to explain past and predict future climate change impacts. Insights from bumble bees suggest that, for diverse invertebrates, predicting climate change impacts will require a more nuanced understanding of the effects of heat exposure and additional studies of carry-over effects and compensatory responses by colonies.

    more » « less
  5. Abstract

    Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

    more » « less