skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: JARVIS-Leaderboard: a large scale benchmark of materials design methods
Abstract Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website:https://pages.nist.gov/jarvis_leaderboard/  more » « less
Award ID(s):
2044842 2053929
PAR ID:
10505464
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
10
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT, ≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov . 
    more » « less
  2. Abstract BackgroundComputational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions. ResultsIn our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers. ConclusionsOur heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly packagehttps://github.com/humengying0907/deconvBenchmarkingandhttps://doi.org/10.5281/zenodo.8206516, enabling further developments in deconvolution methods. 
    more » « less
  3. Abstract Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai). 
    more » « less
  4. In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct real-system measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward. 
    more » « less
  5. Abstract We present a critical analysis of physics-informed neural operators (PINOs) to solve partial differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena using carefully curated datasets. Further, we provide a benchmarking suite which can be used to evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide thesource code, an interactivewebsiteto visualize the predictions of our PINOs, and a tutorial for their use at theData and Learning Hub for Science. 
    more » « less