skip to main content

Title: The survival and entrainment of molecules and dust in galactic winds

Recent years have seen excellent progress in modelling the entrainment of T ∼ 104 K atomic gas in galactic winds. However, the entrainment of cool, dusty T ∼ 10–100 K molecular gas, which is also observed outflowing at high velocity, is much less understood. Such gas, which can be 105 times denser than the hot wind, appears extremely difficult to entrain. We run 3D wind-tunnel simulations with photoionization self-shielding and evolve thermal dust sputtering and growth. Unlike almost all such simulations to date, we do not enforce any artificial temperature floor. We find efficient molecular gas formation and entrainment, as well as dust survival and growth through accretion. Key to this success is the formation of large amounts of 104 K atomic gas via mixing, which acts as a protective ‘bubble wrap’ and reduces the cloud overdensity to χ ∼ 100. This can be understood from the ratio of the mixing to cooling time. Before entrainment, when shear is large, tmix/tcool ≲ 1, and gas cannot cool below the ‘cooling bottleneck’ at 5000 K. Thus, the cloud survival criterion is identical to the well-studied purely atomic case. After entrainment, when shear falls, tmix/tcool > 1, and the cloud becomes multiphase, with comparable molecular and atomic masses. The broad temperature PDF, with abundant gas in the formally unstable $50 \, {\rm K} \lt T \lt 5000 \, {\rm K}$ range, agrees with previous ISM simulations with driven turbulence and radiative cooling. Our findings have implications for dusty molecular gas in stellar and active galactic nuclei outflows, cluster filaments, ‘jellyfish’ galaxies, and asymptomatic giant branch winds.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4032-4057
["p. 4032-4057"]
Sponsoring Org:
National Science Foundation
More Like this

    Much progress has been made recently in the acceleration of ∼104 K clouds to explain absorption line measurements of the circumgalactic medium and the warm, atomic phase of galactic winds. However, the origin of the cold, molecular phase in galactic winds has received relatively little theoretical attention. Studies of the survival of ∼104 K clouds suggest efficient radiative cooling may enable the survival of expelled material from galactic discs. Alternatively, gas colder than 104 K may form within the outflow, including molecules if dust survives the acceleration process. We explore the survival of dusty clouds in a hot wind with three-dimensional hydrodynamic simulations including radiative cooling and dust modelled as tracer particles. We find that cold ∼103 K gas can be destroyed, survive, or transformed entirely to ${\sim}10^4\,$ K gas. We establish analytic criteria distinguishing these three outcomes that compare characteristic cooling times to the system’s ‘cloud crushing’ time. In contrast to typically studied ∼104 K clouds, colder clouds are entrained faster than the drag time as a result of efficient mixing. We find that while dust can in principle survive embedded in the accelerated clouds, the survival fraction depends critically on the time dust spends in the hot phase and on the effective threshold temperature for destruction. We discuss our results in the context of polluting the circumgalactic medium with dust and metals, as well as understanding observations suggesting rapid acceleration of molecular galactic winds and ram-pressure-stripped tails of jellyfish galaxies.

    more » « less

    Understanding the survival, growth, and dynamics of cold gas is fundamental to galaxy formation. While there has been a plethora of work on ‘wind tunnel’ simulations that study such cold gas in winds, the infall of this gas under gravity is at least equally important, and fundamentally different since cold gas can never entrain. Instead, velocity shear increases and remains unrelenting. If these clouds are growing, they can experience a drag force due to the accretion of low-momentum gas, which dominates over ram pressure drag. This leads to subvirial terminal velocities, in line with observations. We develop simple analytic theory and predictions based on turbulent radiative mixing layers. We test these scalings in 3D hydrodynamic simulations, both for an artificial constant background and a more realistic stratified background. We find that the survival criterion for infalling gas is more stringent than in a wind, requiring that clouds grow faster than they are destroyed ($t_{\rm grow} \lt 4\, t_{\rm cc}$). This can be translated to a critical pressure, which for Milky Way-like conditions is $P \sim 3000 \, {k}_\mathrm{ B} \, {\rm K}\, {\rm cm}^{-3}$. Cold gas that forms via linear thermal instability (tcool/tff < 1) in planar geometry meets the survival threshold. In stratified environments, larger clouds need only survive infall until cooling becomes effective. We discuss applications to high-velocity clouds and filaments in galaxy clusters.

    more » « less
  3. Abstract

    Turbulent radiative mixing layers play an important role in many astrophysical contexts where cool (≲104K) clouds interact with hot flows (e.g., galactic winds, high-velocity clouds, infalling satellites in halos and clusters). The fate of these clouds (as well as many of their observable properties) is dictated by the competition between turbulence and radiative cooling; however, turbulence in these multiphase flows remains poorly understood. We have investigated the emergent turbulence arising in the interaction between clouds and supersonic winds in hydrodynamicenzo-esimulations. In order to obtain robust results, we employed multiple metrics to characterize the turbulent velocity,vturb. We find four primary results when cooling is sufficient for cloud survival. First,vturbmanifests clear temperature dependence. Initially,vturbroughly matches the scaling of sound speed on temperature. In gas hotter than the temperature where cooling peaks, this dependence weakens with time untilvturbis constant. Second, the relative velocity between the cloud and wind initially drives rapid growth ofvturb. As it drops (from entrainment),vturbstarts to decay before it stabilizes at roughly half its maximum. At late times, cooling flows appear to support turbulence. Third, the magnitude ofvturbscales with the ratio between the hot phase sound-crossing time and the minimum cooling time. Finally, we find tentative evidence for a length scale associated with resolving turbulence. Underresolving this scale may cause violent shattering and affect the cloud’s large-scale morphological properties.

    more » « less

    We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually overwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies with the shallowest potentials, which produce nearly isothermal $T \approx 10^4\,$ K winds driven by CR pressure. Many of the time-averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies, we find mass outflow rates $\dot{M}$ somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately ‘energy-like’ scaling $\dot{M} \propto v_{\rm esc}^{-2}$. The winds accelerate slowly and reach asymptotic wind speeds of only ∼0.4vesc. The total wind power is $\sim 1~{{\ \rm per\ cent}}$ of the power from supernovae, suggesting inefficient preventive CR feedback for the physical conditions modelled here. We predict significant spatially extended emission and absorption lines from 104–105.5 K gas; this may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies.

    more » « less

    The formation and evolution of galaxies have proved sensitive to the inclusion of stellar feedback, which is therefore crucial to any successful galaxy model. We present INFERNO, a new model for hydrodynamic simulations of galaxies, which incorporates resolved stellar objects with star-by-star calculations of when and where the injection of enriched material, momentum, and energy takes place. INFERNO treats early stellar kinematics to include phenomena such as walkaway and runaway stars. We employ this innovative model on simulations of a dwarf galaxy and demonstrate that our physically motivated stellar feedback model can drive vigorous galactic winds. This is quantified by mass and metal loading factors in the range of 10–100, and an energy loading factor close to unity. Outflows are established close to the disc, are highly multiphase, spanning almost 8 orders of magnitude in temperature, and with a clear dichotomy between mass ejected in cold, slow-moving (T ≲ 5 × 104 K, v < 100 km s−1) gas and energy ejected in hot, fast-moving (T > 106 K, v > 100 km s−1) gas. In contrast to massive disc galaxies, we find a surprisingly weak impact of the early stellar kinematics, with runaway stars having little to no effect on our results, despite exploding in diffuse gas outside the dense star-forming gas, as well as outside the galactic disc entirely. We demonstrate that this weak impact in dwarf galaxies stems from a combination of strong feedback and a porous interstellar medium, which obscure any unique signatures that runaway stars provide.

    more » « less