skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging shared ancestral variation to detect local introgression
Introgression is a common evolutionary phenomenon that results in shared genetic material across non-sister taxa. Existing statistical methods such as Patterson’sDstatistic can detect introgression by measuring an excess of shared derived alleles between populations. TheDstatistic is effective to detect genome-wide patterns of introgression but can give spurious inferences of introgression when applied to local regions. We propose a new statistic,D+, that leverages both shared ancestral and derived alleles to infer local introgressed regions. Incorporating both shared derived and ancestral alleles increases the number of informative sites per region, improving our ability to identify local introgression. We use a coalescent framework to derive the expected value of this statistic as a function of different demographic parameters under an instantaneous admixture model and use coalescent simulations to compute the power and precision ofD+. While the power ofDandD+is comparable,D+has better precision thanD. We applyD+to empirical data from the 1000 Genome Project andHeliconiusbutterflies to infer local targets of introgression in humans and in butterflies.  more » « less
Award ID(s):
1557151 1759846
PAR ID:
10505700
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Zhu, Xiaofeng
Publisher / Repository:
PLoS
Date Published:
Journal Name:
PLOS Genetics
Volume:
20
Issue:
1
ISSN:
1553-7404
Page Range / eLocation ID:
e1010155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed. 
    more » « less
  2. We used 20 de novo genome assemblies to probe the speciation history and architecture of gene flow in rapidly radiatingHeliconiusbutterflies. Our tests to distinguish incomplete lineage sorting from introgression indicate that gene flow has obscured several ancient phylogenetic relationships in this group over large swathes of the genome. Introgressed loci are underrepresented in low-recombination and gene-rich regions, consistent with the purging of foreign alleles more tightly linked to incompatibility loci. Here, we identify a hitherto unknown inversion that traps a color pattern switch locus. We infer that this inversion was transferred between lineages by introgression and is convergent with a similar rearrangement in another part of the genus. These multiple de novo genome sequences enable improved understanding of the importance of introgression and selective processes in adaptive radiation. 
    more » « less
  3. Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method—VolcanoFinder—to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. 
    more » « less
  4. Abstract Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry inPapilioswallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene,doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option ofdsxas a mimicry locus, and that evolutionary turnover ofdsxalleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages. 
    more » « less
  5. ABSTRACT Hybridisation is a common feature of evolutionary radiations, but its genomic consequences vary depending on when it occurs. Since reproductive isolation takes time to accumulate, hybridisation can occur at multiple points during divergence. Previous studies suggested that the taxonomic diversity in evolutionary radiations can help infer the timing of past gene flow events. Here, we assess the power of these approaches for revealing when gene flow occurred between two monkeyflower taxa (Mimulus aurantiacus) endemic to the Channel Islands of California. Coalescent simulations reveal that conventional four‐taxon tests may not be capable of fully distinguishing between recent and ancient introgression, but genome‐wide patterns of phylogenetic discordance vary predictably with different histories of hybridisation. Using whole‐genome sequencing and phylogenetic tests for introgression across theM. aurantiacusradiation, we identify signals of both ancient and recent hybridisation that occurred between the island taxa and their ancestors. In addition, we find widespread selection against introgressed ancestry, consistent with polygenic barriers to gene flow. However, we also identify localised signals across the genome that may indicate adaptive introgression. This study highlights the power and challenges of trying to disentangle complex histories of hybridisation. More broadly, our results illustrate the multiple roles that gene flow can play in evolutionary radiations: hybridisation can expose genetic incompatibilities that contribute to reproductive isolation while also likely facilitating adaptation by transferring beneficial alleles between taxa. These findings underscore the dynamic interplay between the timing of hybridisation and natural selection in shaping evolutionary trajectories within radiations. 
    more » « less