skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities
Sustainable cities depend on urban forests. City trees—pillars of urban forests—improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset ofN= 5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., “native”). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., “native” trees) comprise 0.51–87.4% (median = 45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees alongside sociodemographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees.  more » « less
Award ID(s):
1757780
PAR ID:
10505824
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological invasions are profoundly altering Earth’s ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass. We then analyzed community-level changes in native tree diversity and biomass in relation to nonnative tree invasion and native species colonization. Across the entire eastern United States, native tree species richness decreased over time in plots where nonnatives occurred, whereas nonnative species richness and the biomass of both natives and nonnatives increased over time. At the community scale, native richness tended to decline following nonnative invasion, whereas native biomass and richness-independent measures of trait and phylogenetic diversity tended to remain stable. These patterns can be explained by the rarity of the displaced native species and their functional and phylogenetic similarity to native species that survived nonnative invasions. In contrast, native survivors tended to be functionally distinct from nonnative invaders, suggesting an important role for niche partitioning in community dynamics. Colonization by previously absent native species was associated with an increase in native richness (beyond the addition of native colonizers), which contrasts with declines in native richness that tended to follow nonnative invasion. These results suggest a causal role for nonnative species in the native richness decline of invaded communities. 
    more » « less
  2. Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163. 
    more » « less
  3. Wang, Yuyan (Ed.)
    Urban street trees offer cities critical environmental and social benefits. In New York City (NYC), a decadal census of every street tree is conducted to help understand and manage the urban forest. However, it has previously been impossible to analyze growth of an individual tree because of uncertainty in tree location. This study overcomes this limitation using a three-step alignment process for identifying individual trees with ZIP Codes, address, and species instead of map coordinates. We estimated individual growth rates for 126,362 street trees (59 species and 19% of 2015 trees) using the difference between diameter at breast height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was verified by locating and measuring the DBH of select trees and measuring a set of trees annually for over 5 years. We examined determinants of tree growth rates and explored their spatial distribution. In our newly created NYC tree growth database, fourteen species have over 1000 unique trees. The three most abundant tree species vary in growth rates; London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n = 15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that incorporated biological factors including size and the local urban form indicated that species was the major factor controlling growth rates, and tree stewardship had only a small effect. Furthermore, tree measurements by volunteer community scientists were as accurate as those made by NYC staff. Examining city wide patterns of tree growth indicates that areas with a higher Social Vulnerability Index have higher than expected growth rates. Continued efforts in street tree planting should utilize known growth rates while incorporating community voices to better provide long-term ecosystem services across NYC. 
    more » « less
  4. Atkinson, Phil (Ed.)
    Shade coffee is a well-studied cultivation strategy that creates habitat for tropical birds while also maintaining agricultural yield. Although there is a general consensus that shade coffee is more “bird-friendly” than a sun coffee monoculture, little work has investigated the effects of specific shade tree species on insectivorous bird diversity. This study involved avian foraging observations, mist netting data, temperature loggers, and arthropod sampling to investigate bottom-up effects of two shade tree taxa - native Cordia sp. and introduced Grevillea robusta - on insectivorous bird communities in central Kenya. Results indicate that foliage-dwelling arthropod abundance, and the richness and overall abundance of foraging birds were all higher on Cordia than on Grevillea. Furthermore, multivariate analyses of the bird community indicate a significant difference in community composition between the canopies of the two tree species, though the communities of birds using the coffee understory under these shade trees were similar. In addition, both shade trees buffered temperatures in coffee, and temperatures under Cordia were marginally cooler than under Grevillea. These results suggest that native Cordia trees on East African shade coffee farms may be better at mitigating habitat loss and attracting insectivorous birds that could promote ecosystem services. Identifying differences in prey abundance and preferences in bird foraging behavior not only fills basic gaps in our understanding of the ecology of East African coffee farms, it also aids in developing region-specific information to optimize functional diversity, ecosystem services, and the conservation of birds in agricultural landscapes. 
    more » « less
  5. Urban forests provide ecosystem services important for regulating climate, conserving biodiversity, and maintaining human well‐being. However, these forests vary in composition and physiological traits due to their unique biophysical and social contexts. This variation complicates assessing the functions and services of different urban forests. To compare the characteristics of the urban forest, we sampled the species composition and two externally sourced traits (drought tolerance and water‐use capacity) of tree and shrub species in residential yards, unmanaged areas, and natural reference ecosystems within six cities across the contiguous US. As compared to natural and unmanaged forests, residential yards had markedly higher tree and shrub species richness, were composed primarily of introduced species, and had more species with low drought tolerance. The divergence between natural and human‐managed areas was most dramatic in arid climates. Our findings suggest that the answer to the question of “what is an urban forest” strongly depends on where you look within and between cities. 
    more » « less