Abstract Despite large theoretical energy densities, metal‐sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution‐processable, room temperature (RT) synthesis, local structures, and application of a sulfur‐rich Mo3S13chalcogel as a conversion‐based electrode for lithium‐sulfide batteries (LiSBs). The structure of the amorphous Mo3S13chalcogel is derived throughoperandoRaman spectroscopy, synchrotron X‐ray pair distribution function (PDF), X‐ray absorption near edge structure (XANES), and extended X‐ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three‐dimensional (3D) network is the connection of Mo3S13units through S−S bonds. Li/Mo3S13half‐cells deliver initial capacity of 1013 mAh g−1during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g−1at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high‐capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo−S coordination in Mo3S13chalcogel. These findings showcase the potential of Mo3S13chalcogels as metal‐sulfide electrode materials for LiSBs.
more »
« less
Amorphous K–Co–Mo–S x Chalcogel: A Synergy of Surface Sorption and Ion‐Exchange
Abstract Chalcogel represents a unique class of meso‐ to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion‐exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10(KCMS) at room temperature is reported. Synchrotron X‐ray pair distribution function (PDF), X‐ray absorption near‐edge structure (XANES), and extended X‐ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+2and Mo4+3clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ions. The ionically bound K+ions remain in the percolating pores of the Co–Mo–S covalent network. XANES of Co K‐edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion‐exchange properties with UO22+ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO22+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo‐cationic species by integrating a synergy of surface sorption and ion‐exchange.
more »
« less
- Award ID(s):
- 2100797
- PAR ID:
- 10506024
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A common characteristic of many “overdoped” cuprates prepared with high-pressure oxygen is T c values ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and normal Fermi liquid states. X-ray absorption fine-structure (XAFS) measurements at 52 K on samples of high-pressure oxygen (HPO) YSr 2 Cu 2.75 Mo 0.25 O 7.54 , T c = 84 K show that the Mo is in the (VI) valence in an unusually undistorted octahedral geometry with predominantly Mo neighbors that is consistent with its assigned substitution for Cu in the chain sites of the structure. Perturbations of the Cu environments are minimal, although the Cu X-ray absorption near-edge structure (XANES) differs from that in other cuprates. The primary deviation from the crystal structure is therefore nanophase separation into Mo- and Cu-enriched domains. There are, however, indications that the dynamical attributes of the structure are altered relative to YBa 2 Cu 3 O 7 , including a shift of the Cu-apical O two-site distribution from the chain to the plane Cu sites. Another effect that would influence T c is the possibility of multiple bands at the Fermi surface caused by the presence of the second phase and the lowering of the Fermi level.more » « less
-
Ion beam-induced deposition (IBID) using Pt(CO)2Cl2and Pt(CO)2Br2as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2and Pt(CO)2Br2exposed to 3 keV Ar+, He+, and H2+ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX2species. Upon further ion irradiation these PtCl2or PtBr2species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar+) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar+/Pt(CO)2Cl2, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors.more » « less
-
Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ Å3$$,$$ $${K}_{0}=24.8$$ GPa and$${K}_{0}^{\prime}=4.0$$ using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.more » « less
An official website of the United States government

