Abstract Luminescent solar concentrators (LSCs) were made by the infiltration of microfibrous thin films (µFTFs) of Parylene C by Lumogen F Red 305 (LFR305), in order to maximize the concentration of light made available to a photovoltaic solar cell (PVSC). The Parylene-CµFTFs with either tilted columnar or chevronic morphology were fabricated using physicochemical vapor deposition and infiltrated with LFR305 using thermal evaporation. Application of a voltage across a photoresistor illuminated by a solar simulator (AM1.5) through an LFR305-infiltrated Parylene-C LSC resulted in an enhancement of the ON-OFF minimum current ratio by a factor of compared to the ratio before LFR305 infiltration/deposition, regardless of morphology; furthermore, LFR305 infiltration enhanced the ON-OFF minimum current ratio by %, depending on the morphology. The LSC concentration factor was determined to be after integration with a monocrystalline-silicon solar cell, depending on the morphology.
more »
« less
Ar transport and blister growth kinetics in titania-doped germania-based optical coatings
Abstract Blistering is a phenomenon sometimes observed in sputtered-deposited thin films but seldom investigated in detail. Here, we consider the case of titania-doped germania (TGO)/silica multilayers deposited by ion beam sputtering. TGO is a candidate as high refractive index material in the Bragg mirrors for the next iteration of gravitational waves detectors. It needs to be annealed at 600∘C for 100 h in order to reach the desired relaxation state. However under some growth conditions, in 52-layer TGO/silica stacks, blistering occurs upon annealing at a temperature near 500∘C, which corresponds to the temperature where Ar desorbs from TGO. In order to better understand the blistering phenomenon, we measure the Ar transport in single layers of TGO and silica. In the case of 1µm-thick TGO layers, the Ar desorption is mainly limited by detrapping. The transport model also correctly predicts the evolution of the total amount of Ar in a 8.5µm stack of TGO and silica layers annealed at 450∘C, but in that case, the process is mainly limited by diffusion. Since Ar diffusion is an order of magnitude slower in TGO compared to silica, we observe a correspondingly strong accumulation of Ar in TGO. The Ar transport model is used to explain some regimes of the blisters growth, and we find indications that Ar accumulation is a driver for their growth in general, but the blisters nucleation remains a complex phenomenon influenced by several other factors including stress, substrate roughness, and impurities.
more »
« less
- PAR ID:
- 10506098
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 41
- Issue:
- 11
- ISSN:
- 0264-9381
- Format(s):
- Medium: X Size: Article No. 115013
- Size(s):
- Article No. 115013
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( ) and backscattering ( ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in and to daytime particle growth and division of cells, with particles driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera( ) to be an important driver of at the time of sampling, whereasProchlorococcusdynamics ( ) were essential to reproducing temporal variability in . This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.more » « less
-
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ , by showing that$$\mathcal { C}$$ admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ , faster#SAT algorithms for$$\mathcal { C}$$ circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ , which may bestrongerthan$$\mathcal { C}$$ itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ -size$$\mathcal { C}$$ -circuits running in$$2^{n-n^{{\varepsilon }}}$$ time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.more » « less
-
Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ Å3$$,$$ $${K}_{0}=24.8$$ GPa and$${K}_{0}^{\prime}=4.0$$ using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.more » « less
-
Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rate to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb, reaches its maximum, . If atr≫rbthe thin disk accretes with , then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii.more » « less
An official website of the United States government
