skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A supervised Bayesian factor model for the identification of multi-omics signatures
Abstract MotivationPredictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses to vaccination or therapy. These signatures are identified from high-throughput profiling assays through a combination of dimensionality reduction and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effectively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among measurements. These factors provide biologically interpretable features for predictive modeling. However, multi-omics integration and predictive modeling are generally performed independently in sequential steps, leading to suboptimal factor construction. Combining these steps can yield better multi-omics signatures that are more predictive while still being biologically meaningful. ResultsWe developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling datasets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the reconstruction of underlying factors in synthetic examples and prediction accuracy of coronavirus disease 2019 severity and breast cancer tumor subtypes. Availability and implementationSPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR.  more » « less
Award ID(s):
2310836
PAR ID:
10506146
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
40
Issue:
5
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder, posing a growing public health challenge. Traditional machine learning models for AD prediction have relied on single omics data or phenotypic assessments, limiting their ability to capture the disease’s molecular complexity and resulting in poor performance. Recent advances in high-throughput multi-omics have provided deeper biological insights. However, due to the scarcity of paired omics datasets, existing multi-omics AD prediction models rely on unpaired omics data, where different omics profiles are combined without being derived from the same biological sample, leading to biologically less meaningful pairings and causing less accurate predictions. To address these issues, we propose UnCOT-AD, a novel deep learning framework for Unpaired Cross-Omics Translation enabling effective multi-omics integration for AD prediction. Our method introduces the first-ever cross-omics translation model trained on unpaired omics datasets, using two coupled Variational Autoencoders and a novel cycle consistency mechanism to ensure accurate bidirectional translation between omics types. We integrate adversarial training to ensure that the generated omics profiles are biologically realistic. Moreover, we employ contrastive learning to capture the disease specific patterns in latent space to make the cross-omics translation more accurate and biologically relevant. We rigorously validate UnCOT-AD on both cross-omics translation and AD prediction tasks. Results show that UnCOT-AD empowers multi-omics based AD prediction by combining real omics profiles with corresponding omics profiles generated by our cross-omics translation module and achieves state-of-the-art performance in accuracy and robustness. Source code is available at https://github.com/abrarrahmanabir/UnCOT-AD 
    more » « less
  2. Beiko, Robert G (Ed.)
    ABSTRACT Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke’sR2of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets. IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures. 
    more » « less
  3. Abstract MotivationIntegrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy. ResultsFor evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis. Availability and implementationSource code is available at: https://github.com/compbiolabucf/OmicsNMF. 
    more » « less
  4. Robinson, Peter (Ed.)
    Abstract Motivation Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Results Large-scale experiments on The Cancer Genome Atlas breast cancer, lung cancer and ovarian cancer datasets validate that (i) the model can effectively integrate two omics data (e.g. mRNA and microRNA expression data) and their interaction network (e.g. microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (ii) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals. Availability and implementation Source code is available at: https://github.com/CompbioLabUCF/omicsGAN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Objective: The rapid advancement of high-throughput technologies in the biomedical field has resulted in the accumulation of diverse omics data types, such as mRNA expression, DNA methylation, and microRNA expression, for studying various diseases. Integrating these multi-omics datasets enables a comprehensive understanding of the molecular basis of cancer and facilitates accurate prediction of disease progression. Methods: However, conventional approaches face challenges due to the dimensionality curse problem. This paper introduces a novel framework called Knowledge Distillation and Supervised Variational AutoEncoders utilizing View Correlation Discovery Network (KD-SVAE-VCDN) to address the integration of high-dimensional multi-omics data with limited common samples. Through our experimental evaluation, we demonstrate that the proposed KD-SVAE-VCDN architecture accurately predicts the progression of breast and kidney carcinoma by effectively classifying patients as long- or short-term survivors. Furthermore, our approach outperforms other state-of-the-art multi-omics integration models. Results: Our findings highlight the efficacy of the KD-SVAE-VCDN architecture in predicting the disease progression of breast and kidney carcinoma. By enabling the classification of patients based on survival outcomes, our model contributes to personalized and targeted treatments. The favorable performance of our approach in comparison to several existing models suggests its potential to contribute to the advancement of cancer understanding and management. Conclusion: The development of a robust predictive model capable of accurately forecasting disease progression at the time of diagnosis holds immense promise for advancing personalized medicine. By leveraging multi-omics data integration, our proposed KD-SVAE-VCDN framework offers an effective solution to this challenge, paving the way for more precise and tailored treatment strategies for patients with different types of cancer. 
    more » « less